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Lecture 12

Torque-Free Motion

A
TTITUDE dynamics in the absence of external torques is considered, as it is a good approximation
for situations with weak torques. The special case of an axisymmetric object, which leads to an
analytic solution to the equations of motion, is studied in detail, and geometric interpretations of

the motion for this special torque-free case are provided.

Overview

Recall Euler’s equations of motion from DYNAMICS, in particular for the case with a diagonal moment of
inertia matrix, I , that leads to a set of three scalar equations. Assuming there is no torque, τ ≡ 0:

I1ω̇1 + (I3 − I2)ω2ω3 =��>
0

τ1 (12.1a)

I2ω̇2 + (I1 − I3)ω3ω1 =��>
0

τ2 (12.1b)

I3ω̇3 + (I2 − I1)ω1ω2 =��>
0

τ3 (12.1c)

where I1, I2, and I3 are the body’s principal moments of inertia, and ω1, ω2, and ω3 are the components
of its angular velocity ωP in the body-fixed principal axes frame, FP . This torque-free case is an important
one, because a general rotationalmotion canbe considered as adeviation from this referencemotion. Before
proceeding to study the torque-freemotion inmoredetail, wenote that rotational kinetic energy andangular
momentum are constant for this type of motion:

T =
1

2
ω

ᵀ
Iω =

1

2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
⇒ Ṫ = I1ω1ω̇1 + I2ω2ω̇2 + I3ω3ω̇3 = ω

ᵀ

��
�*= −ω×Iω(

I
.
ω
)

= 0 (12.2a)

h = |Iω| =
√
I2
1ω

2
1 + I2

2ω
2
2 + I2

3ω
2
3 ⇒ ḣ =

1

h

(
I2
1ω1ω̇1 + I2

2ω2ω̇2 + I2
3ω3ω̇3

)
=

(
Iω
)

h

ᵀ

��
�*= −ω×Iω(

I
.
ω
)

= 0

(12.2b)

where the triple product identity is used to simplify both equations to zero. In fact, we observe that, in ad-
dition to its magnitude, the direction of the angular momentum vector in the inertial frame,FI , is constant
too:

~
h• =

~
τ =

~
0 ⇒

~
h : constant (12.3)
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LECTURE 12. TORQUE-FREE MOTION

Because of the nonlinearity of Eq. (12.1) owing to the presence of the ωiωj terms, there are numerical
difficulties associated with integrating these equations. Analytical solutions of Eq. (12.1) exist for a limited
number of special cases. We choose to focus on the special case of an inertially axisymmetrical body.

Definition. A rigid body is called inertially axisymmetrical if two of its principal moments of inertia are
equal: I1 = I2 = It (transverse) and I3 = Ia (axial). Similarly, an isoinertial body has the same moment of
inertia about all three of its principal axes: I1 = I2 = I3 = I .

Note: An inertially axisymmetrical body need not be a body of revolution, like a circular shaft. For example,
a rectangular prism of uniform density with side lengths a, a, and b is inertially axisymmetrical as well.

Note: The torque-free motion of an isoinertial body has a trivial solution, because Eq. (12.1) reduces to
Iω̇1 = Iω̇2 = Iω̇3 = 0, which implies a constant ω. The result is a constant-rate spinning of the body
about an axis fixed in itself and in an inertial frame, FI .

Angular Velocity Vector

For an inertially axisymmetric body with moments of inertia I1 = I2 = It and I3 = Ia, Eq. (12.1) becomes:

Itω̇1 = (It − Ia)ω2ω3 (12.4a)
Itω̇2 = (Ia − It)ω3ω1 (12.4b)
Iaω̇3 = 0 ⇒ ω3 = ω30 , ν (12.4c)

where we let ν represent the constant 3-component of the angular velocity. We then define the relative spin
rate as:

Ω ,
(It − Ia

It

)
ν

using which in Eq. (12.4) and differentiating the result yields:

ω̇1 − Ωω2 = 0 ⇒ ω̈1 − Ωω̇2 = ω̈1 + Ω2ω1 = 0 (12.5a)
ω̇2 + Ωω1 = 0 ⇒ ω̈2 + Ωω̇1 = ω̈2 + Ω2ω2 = 0 (12.5b)

where Eqs. (12.4b) and (12.4a) are used for ω̇2 and ω̇1 in the right-hand side relationship. The general solu-
tions of these ODEs are provided by:

ω1(t) = A cos(Ωt) +B sin(Ωt) (12.6a)
ω2(t) = C cos(Ωt) +D sin(Ωt) (12.6b)

differentiating which with respect to time and using the ICs of Eq. (12.5) in which yields:

ω̇1(0) = BΩ = Ωω2(0) ⇒ B = ω20
= C (12.7a)

ω̇2(0) = DΩ = −Ωω1(0) ⇒ D = −ω10
= −A (12.7b)
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With the coefficients of the particular solution determined and substituted back into Eq. (12.6), it can easily
be shown that:

ωt(t) ,
√
ω2

1(t) + ω2
2(t) =

√
ω2

10
+ ω2

20
⇒ ωt : constant (12.8a)

ω(t) ,
√
ω2

1(t) + ω2
2(t) + ω2

3(t) =
√
ω2
t + ν2 ⇒ ω : constant (12.8b)

wherewe introduceωt, the transverse component of
~
ω. The fact that it remains constant implies the angular

velocity vector’s projection onto the 1-2 plane rotates in a circle. With this definition, the angular velocity
solution becomes:

ω1(t) = ω10
cos(Ωt) + ω20

sin(Ωt) = ωt sin
[
Ωt+ tan−1

(ω10

ω20

)]
(12.9a)

ω2(t) = ω20
cos(Ωt)− ω10

sin(Ωt) = ωt cos
[
Ωt+ tan−1

(ω10

ω20

)]
(12.9b)

which follows from the following general trigonometric identity:

A sin(θ) +B cos(θ) =
√
A2 +B2 sin

[
θ + tan−1

(B
A

)]
=
√
A2 +B2 cos

[
θ + tan−1

(−A
B

)]
(12.10)

Lastly, defining t0 such that ω1(t0) = 0 and ω2(t0) = ωt, we introduce the spin angle as follows:

µ(t) , Ω(t− t0)

making note that µ̇ = Ω is the relative spin rate. With this definition, the particular angular velocity solution,
resolved in FP and given by Eq. (12.6), can be rewritten as:

ω1(t) = ωt sin
(
µ(t)

)
(12.11a)

ω2(t) = ωt cos
(
µ(t)

)
(12.11b)

ω3(t) = ν (12.11c)

Since ν and ωt (and ω) are constant, we obtain an angular velocity vector,
~
ω, that is spinning about ˆ

~
p

3

of FP (the symmetry direction that has Ia as the principal moment of inertia about itself) as shown in Fig-
ure 12.1a, with its tip tracing a circle and its 1- and 2-components changing periodically. We denote the
constant angle between

~
ω and ˆ

~
p

3
as β. Thus far, we have a description of the motion of

~
ω with respect to

FP , but our ultimate goal is to describe the motion of FP with respect to FI in this special case.

Angular Momentum Vector

Using hP = IωP , the inertial axisymmetry assumption on the body, and the velocity vector components
obtained in Eq. (12.11), the components of angular momentum in FP corresponding to this special case of
torque-free motion can be written as

h1(t) = I1ω1(t) = Itωt sin
(
µ(t)

)
⇒ h1(t) = ht sin

(
µ(t)

)
(12.12a)

h2(t) = I2ω2(t) = Itωt cos
(
µ(t)

)
⇒ h2(t) = ht cos

(
µ(t)

)
(12.12b)

h3(t) = I3ω3(t) = Iaν ⇒ h3(t) = Iaν = ha (12.12c)
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(a) Angular Velocity Vector
(b) Angular Momentum Vector

Figure 12.1: Spinning of Vectors as Observed in Principal Axes Frame, FP [Hughes] (used with permission)

from which, similarly to the angular velocity vector, the following constant magnitudes can be deduced:

ht(t) ,
√
h2

1(t) + h2
2(t) =

√
h2
t

[
sin2

(
µ(t)

)
+ cos2

(
µ(t)

)]
= ht ⇒ ht : constant (12.13a)

h(t) ,
√
h2

1(t) + h2
2(t) + h2

3(t) =
√
h2
t + h2

a ⇒ h : constant (12.13b)

which is consistent with Eq. (12.2b). Therefore, the angular momentum vector also rotates about ˆ
~
p

3
of FP

with its tip on a circle of radius ht = Itωt, as shown in Fig. 12.1b. The constant angle between
~
h and ˆ

~
p

3
,

represented by γ, is known as the nutation angle.

Note: For real “nearly” axisymmetrical bodies, γ is not constant and oscillates about a fixedmean value. This
oscillatory process is known as nutation.

3
i
^

h

3
p^

Figure 12.2:
Coplanar Vectors

Since this spinning and that of the angular velocity vector are both dictated by the
angle µ(t), we conclude that

~
h,
~
ω, and ˆ

~
p

3
always lie on the same plane during the

torque-free rotation of an axisymmetrical rigid body, as illustrated in Figure 12.2. Re-
call, also, fromEq. (12.3) that

~
h is fixed (both inmagnitude anddirection) in the inertial

space,FI , even though it is rotating in the body space,FP , as just described. Without
loss of generality, we let

~
h be aligned with ˆ

~
i3 of FI , and proceed to study the body’s

attitude over time.

Attitude History

Using the following sequence of rotations,FP may be obtained starting fromFI as depicted in Figure 12.3:

• rotating about ˆ
~
i3 = ˆ

~
i′3 by precession angle, ψ

• rotating about ˆ
~
i′1 = ˆ

~
i′′1 by nutation angle, γ

• rotating about ˆ
~
i′′3 = ˆ

~
p′

3
by spin angle, µ
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Figure 12.3: Principal Rotation Sequence to Transform FI to FP

where (·)′ and (·)′′ represent basis vectors of intermediate reference frames resulting from the first and the
second rotation, respectively. Therefore, from FUNDAMENTALS, the following rotation matrix describes the
attitude of FP with respect to FI :

CPI = C3(µ)C1(γ)C3(ψ) (12.14)

and recalling the relationship betweenωPIP (t) and θ(t) = [µ γ ψ]
ᵀ from KINEMATICS, we have:

ωPIP = S(µ, γ)
.
θ =

[
13 C3(µ)11 C3(µ)C1(γ)13

]

���

Ω

µ̇

���
0

γ̇

ψ̇

 ⇒ ω =

ψ̇ sin(γ) sin
(
µ(t)

)
ψ̇ sin(γ) cos

(
µ(t)

)
Ω + ψ̇ cos(γ)

 (12.15)

where the fact that γ is constant (since
~
h rotates about ˆ

~
p

3
with a constant nutation angle) and the definition

µ , Ω(t − t0) are used. The precession rate is, thus, obtained by rearranging the last row of Eq. (12.15) as
follows:

Ωp , ψ̇ =�
�* ν
ω3 − Ω

cos(γ)
=
ν − (It − Ia)ν/It

cos(γ)
=

��*
ha

Iaν

It cos(γ)
⇒ Ωp =

h

It
(12.16)

where ha , h cos(γ) is used. This is the rate at which the body-fixed ˆ
~
p

3
rotates about the inertial ˆ

~
i3, and it

can be related to the previously defined relative spin rate as follows:

Ωp =
ν − Ω

cos(γ)
=

IaΩ

(It − Ia) cos(γ)
(12.17)

In summary, given theprincipalmoments of inertia, It and Ia, and the ICs,ωP (0)andψ0, the timehistory
of an axisymmetrical rigid body with respect to the inertial frame can be obtained using Eq. (12.14), with the
angles given by:

ψ(t) = Ωpt+ ψ0 , γ(t) = γ0 , µ(t) = Ω(t− t0) = Ωt− µ0 (12.18)

where it should be emphasized that the ICs γ0 and µ0 are not arbitrary, and are dictated by our initial choice
of aligning

~
h with ˆ

~
i3. For a more general case that avoids this assumption, two rotational transformations

on the above results can be used.
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Geometrical Interpretation

We use the angles β, γ, and α , γ − β (all shown in Figure 12.2) to geometrically describe the rotational
motion of an axisymmetrical rigid body. From their definition, we have:

tan(γ) =
ht
ha

=
Itωt
Iaω3

, tan(β) =
ωt
ω3

⇒ tan(γ) =
It
Ia

tan(β) (12.19)

which provides a comparison between γ and β depending on the ratio of the principal moments of inertia.
Consider two cones: the “space cone” ,Cs, with its axis of symmetry alongˆ

~
i3 and half-angleα; and the “body

cone”, Cp, with its axis of symmetry along ˆ
~
p

3
and half-angle β. To describe the motion:

• for a “prolate” body (like a pencil) with It > Ia, we have γ > β, so the motion can be described by the
rolling without slipping motion of the body cone on the outside surface of the inertially-fixed space
cone, as shown in Figure 12.4a. Since Ω and Ωp have equal signs (from Eq. (12.17)), this is a “prograde
precession”.

• for an “oblate” body (like a disk) with It < Ia, we have γ < β, so the motion can be described by the
rolling without slipping motion of the body cone, while the inertially-fixed space cone is inside the
body cone, as shown in Figure 12.4b. Since Ω and Ωp have opposite signs (from Eq. (12.17)), this is a
“retrograde precession”.

To seewhere the above interpretation comes from, consider the rollingwithout slipping of the body cone
on the space cone, with its instantaneous angular velocity,

~
ω′, along the contact line of the cones. Owing to

our construction,
~
ω of the body’s rotation is also along this line, since γ = α+β represents the angle between

the cones’ axes of symmetry (α ismeasured from
~
ω to

~
h as in 12.2, so itwould benegative for an oblate body).

We thus have
~
ω ||

~
ω′. But using the definition of angular velocity from KINEMATICS, we have:

(a) Prolate: Prograde Precession
(b) Oblate: Retrograde Precession

Figure 12.4: Torque-Free Rotation of (a) Prolate and (b) Oblate Bodies [Hughes] (used with permission)
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• ˆ
~
p

3
is fixed in the body cone, so ˆ

~
p•

3
=
~
ω′ × ˆ

~
p

3
.

• ˆ
~
p

3
is fixed in the body-fixed frame, so ˆ

~
p•

3
=
~
ω × ˆ

~
p

3
.

Therefore, since the two vectors
~
ω and

~
ω′ are parallel and have the same cross productwith the vector ˆ

~
p

3
, we

must have
~
ω ≡

~
ω′. This establishes the validity of the above interpretation, namely using the cones’ rolling

to describe the rigid body’s rotational motion.
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