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B. Vatankhahghadim

Lecture 14

Dual-Spin Stabilization

S
TABILITY of a rigid platform equipped with a spinning wheel is considered. A brief geometric inter-
pretation in terms of the energy andmomentum ellipsoids is provided. The equilibrium cases, in-
cluding one with a non-spinning carrier, are considered, and linear stability analysis is performed

to draw conclusions about the system’s stability conditions.

Overview

Figure 14.1: Gyrostat

A “dual-spin” system (also known as a “gyrostat”), shown in Figure 14.1, consists of:

• A platform (or carrier) with a body-fixed frame, FP , and absolute angular ve-
locity

~
ω with respect to an inertial frame, FI .

• Awheel (or rotor), assumed tobe inertially axisymmetrical and spinning about
its axis of symmetry that is fixed in FP .

We letFP be theprincipal axes frame (with its origin on the composite centre ofmass) of the platform-wheel
combination. Resolving the vectors in this frame (such as

~
h = F

ᵀ
Ph) and noting the contribution of both

the carrier and the wheel to the total angular momentum, h, we have:

h = Iω + Isωsâ ⇒
.
h = I

.
ω + Isω̇sâ (14.1)

where â represents the wheel’s axis of symmetry (expressed in FP ), and Is and ωs are its moment of inertia
and spin rate about this axis. The total moment of inertia matrix, I , is that of the composite system, consist-
ing of both the platform and the rotor contributions. Upon introducing hs , Isωsâ and

.
hs , Isω̇sâ as the

wheel’s angular momentum and its rate of change, using Euler’s equations from DYNAMICS yields:

.
h+ ω×h = τ ⇒ I

.
ω +
.
hs + ω×(Iω + hs) = τ (14.2)

where τ consists of the FP components of the external torque vector.
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LECTURE 14. DUAL-SPIN STABILIZATION

Stability of Torque-Free Pure Spin

Consider, similarly to SPIN STABILIZATION, Euler’s equations in the absence of external torques with a tri-
inertial platform, with distinct I1, I2, and I3 as its principal moments of inertia. Assume, for simplicity, the
wheel’s symmetry axis about which it spins is aligned with the 2-axis of the platform-wheel system, i. e. â =

[0 1 0]
ᵀ . Furthermore, assume ḣs = 0, as required by the special case of a so-calledKelvin’s gyrostat in which

the wheel’s spin rate is constant, ω̇s = 0. With these assumptions, Eq. (14.2) becomes:

I1ω̇1 + (I3 − I2)ω2ω3 − hsω3 =��>
0

τ1 (14.3a)

I2ω̇2 + (I1 − I3)ω3ω1 =��>
0

τ2 (14.3b)

I3ω̇3 + (I2 − I1)ω1ω2 + hsω1 =��>
0

τ3 (14.3c)

where ω1, ω2, and ω3 are the components ofω, the platform’s angular velocity, in the body-fixed frame,FP .
We study, as in TORQUE-FREEMOTION, the constants of motion before proceeding with its stability analysis:

Tp =
1

2
ω

ᵀ
Iω ⇒ ṪP = ω

ᵀ
I
.
ω = ω

ᵀ[
�
��
0

τ − �
��
0.
hs − ω×(Iω + hs)

]
= (Iω + hs)

ᵀ
���:

0
ω×ω ⇒ Ṫp = 0

(14.4a)

h2 = h
ᵀ
h ⇒ �2hḣ = �2h

ᵀ .
h ⇒ hḣ = h

ᵀ
(��>

0
τ − ω×h) = −h

ᵀ
ω×h = −ω

ᵀ
��
�*0

h×h ⇒ ḣ = 0 (14.4b)

where anti-symmetry of the cross operator and the scalar triple product identity are used for the simpli-
fications. It must be noted that Tp as defined above only accounts for the rotational kinetic energy of the
platform, and not that of the wheel. The total rotational kinetic energy, including the wheel’s rotational en-
ergy about its own axis and its contribution to the platform’s angular velocity, is given by:

T = Tp +
1

2
Isω

2
s + h

ᵀ

sω ⇒ Ṫ =�
�7

0

Ṫp + Isωs��>
0

ω̇s + h
ᵀ

s
.
ω = Isωsâ

ᵀ .
ω = τaωs (14.5)

where τa is the torque applied by the platform on the wheel about its symmetry axis to keep it spinning.

Figure 14.2: H with off-set centre
[Hughes] (used with permission)

We conclude that Tp and h2 are constants ofmotion, and analogously
to rigid body rotation of a single spinning object, we can construct an-
gular momentum and energy ellipsoids, H and Tp; however, in this
dual-spin case, setting h = 0 results in Iω + Isωsâ = 0, so H will
now be centred at ω0 = −hsI−1â, as shown in Figure 14.2, instead of
at the origin of FP , namely OP . For an equilibrium, in order to sat-
isfy the .ω = 0 condition, the size of Tp and H can be varied, but
in addition, the location of the centre of H may also be manipulated
by varying the magnitude of the wheel’s angular momentum, namely
hs.

Note: For dual-spins, H is more fundamental than T . Unlike a single
body’s Poinsot construction in which h

ᵀ
ω = 2T was constant and the

tip of ω remained on a polhode on T , now h
ᵀ
ω = 2Tp + h

ᵀ

sω, which is
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no longer constant. Also, when treating energy dissipation later, we will hold h2 constant and slowly reduce
Tp.

Evoking the constant hs assumption in Eq. (14.2), it is evident that an equilibrium with .ω0 = 0 satisfies:

ω×
0 (Iω0 + hs) = 0 (14.6)

which can be viewed as two cases of zero and non-zero values for the platform’s angular velocity.

Nominally Non-Spinning Platform

Sinceω0 ≡ 0, perturbations δω will be the only contributions toω = ω0 + δω. From Eq. (14.3), we have:

I1δω̇1 + (I3 − I2)���
�:≈ 0

δω2δω3 − hsδω3 = 0 ⇒ δω̇1 =
+hs
I1

δω3 (14.7a)

I2δω̇2 + (I1 − I3)���
�:≈ 0

δω3δω1 = 0 ⇒ δω̇2 = 0 (14.7b)

I3δω̇3 + (I2 − I1)��
��:≈ 0

δω1δω2 + hsδω1 = 0 ⇒ δω̇3 =
−hs
I3

δω1 (14.7c)

which lead to the same conclusions as those obtained in the linear stability analysis of SPIN STABILIZATION:
from Eq. (14.7b), δω2 is constant, and differentiating Eqs. (14.7a) and (14.7c) with respect to time yields:

δω̈1 =
+hs
I1

δω̇3 =
−h2s
I1I3

δω1 ⇒ δω̈1 = β2δω1 (14.8a)

δω̈3 =
−hs
I1

δω̇1 =
−h2s
I1I3

δω3 ⇒ δω̈3 = β2δω3 (14.8b)

Figure 14.3:
Precession

where β2 , −h2s/(I1I3). Since I1, I3, and h2s are all positive, we have β2 < 0, im-
plying that e±βt = cos(∓iβt) + i sin(∓iβt) remains bounded as t → ∞. Thus, a
gyrostat with a non-spinning platform, which is frequently used for spacecraft sta-
bilization purposes, is directionally stable, although not asymptotically so because
of the periodic terms. We define precessional frequency as:

Ω2
p0 , −β2 ⇒ Ωp0 =

hs√
I1I3

As illustrated inFigure 14.3, themotionof thedual-spin can thenbe geometrically describedbyprecessionof
the wheel’s spin axis, along ˆ

~
a, about the body’s inertially-fixed angular momentum vector,

~
h, on the surface

of an elliptic cone. The frequency of precession is Ωp0 .

Linear Mechanical Systems Perspective

Similarly to SPIN STABILIZATION, we haveω ≈ δ
.
θ+

(
1− δθ×

)
ω0, but for this special case of a non-spinning

platform, ω0 ≡ 0. The perturbed angular velocity reduces to ω ≈ δ
.
θ, substituting which into Eq. (14.3)
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yields:

I1δθ̈1 + (I3 − I2)��
��:≈ 0

δθ̇2δθ̇3 − hsδθ̇3 = 0 ⇒ I1δθ̈1 − hsδθ̇3 = 0 (14.9a)

I2δθ̈2 + (I1 − I3)��
��:≈ 0

δθ̇3δθ̇1 = 0 ⇒ I2δθ̈2 = 0 ⇒ δθ̇2(t) = δθ̇2(0) (14.9b)

I3δθ̈3 + (I2 − I1)��
��:≈ 0

δθ̇1δθ̇2 + hsδθ̇1 = 0 ⇒ I3δθ̈3 + hsδθ̇1 = 0 (14.9c)

where Eq. (14.9b) implies an attitude unstable system with unbounded growth in the 2-component. Fol-
lowing a similar approach to SPIN STABILIZATION and focusing on the remaining two components (that are
decoupled from δθ2 and its rates), Eqs. (14.9a) and (14.9c) can be written in the form of a gyric system:

M
..
q +G

.
q = 0 (14.10)

q ,

[
δθ1

δθ3

]
, M ,

[
I1 0

0 I3

]
, G ,

[
0 −1

1 0

]
hs ,

whereM = M
ᵀ
> 0 andG = −G

ᵀ
, as required for a gyric system. Although the complete system (with all

3 δθi’s) would have had det(G) = 0, confirming the system’s attitude instability as mentioned in STABILITY,
the “reduced” system in Eq. (14.10) has det(G) = h2

s 6= 0 for any non-zerowheel spin, suggesting directional
stability. Further insight is gained by examining the characteristic equation, det

(
Mr2 +Gr

)
= 0:

b0r
4 + b1r

2 = r2(b0r
2 + b1) = 0 (14.11)

b0 , I1I3 , b1 , h2s

To have r2 on the negative real axis, stability is achieved if and only if b0 > 0 and b1 > 0, both of which are
satisfied. In this case, the characteristic equation can be easily solved, with the non-trivial solution, r2 =

−h2s/(I1I3) = −Ω2
p0 , providing the precession previously seen.

Wheel Aligned with System Principal Axis

Once again, we assume the wheel’s spin axis is parallel to one of the principal axes of the platform-wheel
combination, such as its 2-axis. With â = [0 1 0]

ᵀ , the equilibrium condition in Eq. (14.6) expands as:

I1ω01 = λω01 (14.12a)
I2ω02 + hs = λω02 (14.12b)
I3ω03 = λω03 (14.12c)

where λ is some scalar. These equations imply ω01 = ω03 = 0 and ω02 = ν for some constant ν, and
λ = I2 + hs/ν. This corresponds to a “pure spin” case of the gyrostat. We now consider a perturbation away
from the equilibrium:

ω0 =

0

ν

0

 , ω = ω0 + δω =

 δω1

ν + δω2

δω3

 (14.13)
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where δωi’s are small perturbations. With the perturbedω, the equations of motion in Eq. (14.3) become:

I1δω̇1 + (I3 − I2)(νδω3 +���
�:
≈ 0

δω2δω3)− hsδω3 = 0 ⇒ 0 = I1δω̇1 +
[
(I3 − I2)ν − hs

]
δω3 (14.14a)

I2δω̇2 + (I1 − I3)(���
�:
≈ 0

δω3δω1) = 0 ⇒ 0 = I2δω̇2 (14.14b)

I3δω̇3 + (I2 − I1)(νδω1 +���
�:
≈ 0

δω1δω2) + hsδω1 = 0 ⇒ 0 = I3δω̇3 +
[
(I2 − I1)ν + hs

]
δω1 (14.14c)

where δω2 = δω2(0) is observed to be constant, and using λ = I2 + hs/ν as introduced in Eq. (14.12), we
have the following for δω1(t) and δω3(t):

I1δω̇1 + (I3 − λ)νδω3 = 0 (14.15a)
I3δω̇3 + (λ− I1)νδω1 = 0 (14.15b)

which resemble the relationships obtained in SPIN STABILIZATION, butwithλ taking the role that I2 played in
the single-spin case. Using the same arguments as previouslymade, we conclude thatω-stability is achieved
in one of two cases:

• I1 > λ and I3 > λ: the value of I2 + hs/ν made sufficiently small

• I1 < λ and I3 < λ: the value of I2 + hs/ν made sufficiently large

Simple spin motion of a torque-free gyrostat with I1 < λ < I3 is, however, unstable.
The important conclusion is that the dual-spin system’s stability may be manipulated by adjusting λ

via hs = Isωs. Analogously to the inertia ratios defined for a single body, namely k1 , (I2 − I3)/I1 and
k3 , (I2− I1)/I3, we define the following parameters, with the same significance, for the dual-spin system:

Figure 14.4: Dual-Spin Ω̂po = 0.5
[Hughes] (used with permission)

k1h ,
λ− I3
I1

=
I2 − I3
I1

+
hs/I1
ν

= k1 + Ω̂p0

√
1− k1
1− k3

k3h ,
λ− I1
I3

=
I2 − I1
I3

+
hs/I3
ν

= k3 + Ω̂p0

√
1− k3
1− k1

where Ω̂p0 , hs/(ν
√
I1I3) is a non-dimensional form of Ωp0 seen be-

fore. For a given value of Ω̂p0 , the above definitions can be used to gen-
erate k1 − k3 stability diagrams. One such example, using Ω̂p0 = 0.5,
is shown in Figure 14.4. Since I1I3 > 0, the necessary and sufficient
stability condition is k1hk3h > 0, which can be categorized as:

• k1h > 0, k3h > 0: static stability

• k1h < 0, k3h < 0: gyric stability

The stabilizing effect of the spinning wheel is particularly noticeable
with a large andpositive Ω̂po , which is achievedby faster spinningof the
wheel in the same direction as the platform’s spin. A value of Ω̂po > 1

would ensure static stability for all inertia combinations.
All of the results of this lesson have been obtained disregarding any internal energy dissipation. Accounting
for these effects is the subject of the next lecture.
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Linear Mechanical Systems Perspective

Once again, we haveω ≈ δ
.
θ+

(
1− δθ×

)
ω0, but nowwithω0 , [0 ν 0]

ᵀ . The perturbed angular velocity is
provided, similarly to SPIN STABILIZATION, by:

ω ≈ δ
.
θ +

(
1− δθ×

)
ω0 =

δθ̇1 + νδθ3

δθ̇2 + ν

δθ̇3 − νδθ1

 (14.16)

substituting which into Eq. (14.3) yields:

I1(δθ̈1 + νδθ̇3) + (I3 − I2)(��
��:
≈ 0

δθ̇2δθ̇3 + νδθ̇3 − ν���
�:
≈ 0

δθ̇2δθ1 − ν2δθ1)− hs(δθ̇3 − νδθ1) = 0 (14.17a)

I2δθ̈2 + (I1 − I3)(��
��:
≈ 0

δθ̇1δθ̇3 + ν��
��:
≈ 0

δθ3δθ̇3 − ν���
�:
≈ 0

δθ̇1δθ1 − ν2����:
≈ 0

δθ1δθ3) = 0 (14.17b)

I3(δθ̈3 − νδθ̇1) + (I2 − I1)(��
��:
≈ 0

δθ̇1δθ̇2 + ν��
��:
≈ 0

δθ3δθ̇2 + νδθ̇1 + ν2δθ3) + hs(δθ̇1 + νδθ3) = 0 (14.17c)

which, upon factoring the like terms, can be rewritten as:

I1δθ̈1 +
[
I1 + I3 −

��
�
��*

λ(
I2 +

hs
ν

)]
νδθ̇3 +

[
�
��

��*
λ(

I2 +
hs
ν

)
− I3

]
ν2δθ1 = 0 (14.18a)

I2δθ̈2 = 0 ⇒ δθ̇2(t) = δθ̇2(0) (14.18b)

I3δθ̈3 −
[
I1 + I3 −

�
��

��*
λ(

I2 +
hs
ν

)]
νδθ̇1 +

[
��

�
��*

λ(
I2 +

hs
ν

)
− I1

]
ν2δθ3 = 0 (14.18c)

where Eq. (14.18b), similarly to Eq. (14.9b), implies an attitude unstable system. Setting up Eqs. (14.18a)
and (14.18c) in linear mechanical system form as before, we have:

M
..
q +G

.
q +Kq = 0 (14.19)

q ,

[
δθ1

δθ3

]
, M ,

[
I1 0

0 I3

]
, G ,

[
0 1

−1 0

]
(I1 + I3 − λ)ν , K ,

[
λ− I3 0

0 λ− I1

]
ν2

whereM = M
ᵀ
> 0,G = −G

ᵀ
, andK = K

ᵀ
. We thus, once again, reach the same results as the single

spin case, but with λ taking on the role of I2. The system in Eq. (14.19):

• is statically stable ifK > 0, satisfied if and only if λ > I1, λ > I3.

• may be gyrically stable even ifK ≯ 0, satisfied if and only if λ < I1, λ < I3.

Note: Both of the above cases conform to the aforementioned k1hk3h > 0 condition, with k1h , (λ− I3)/I1

and k3h , (λ− I1)/I3, that was introduced as a necessary and sufficient condition for stability.
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