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Lecture 15

Energy Dissipation in Dual-Spins

T
HEeffectsof internal energydissipationonstability ofdual-spinvehicles are studied. Thepreviously-
encountered energy sink hypothesis is applied, similarly to the dissipation-free stability analysis,
to the two cases involving a nominally non-spinning platform and a wheel aligned with one of

the vehicle’s principal axes. A constrainedminimization approach is used to find the angular velocity corre-
sponding to the system’s minimum kinetic energy, and the stability conditions are derived.

Overview

Recall, from SPIN STABILIZATION, the definition of a “quasi-rigid” body with slow internal dissipation of its
kinetic energy. Considering that a dual-spin consists of two main components, we focus on a gyrostat with
a quasi-rigid carrier and a rigid wheel. A body-fixed principal axes frame, FP (corresponding to the sys-
tem’s overall principal moment of inertia matrix), is considered. The total angular velocity of the system,

~
ω =

~
F

ᵀ
Pω, is arbitrarily general.

Note: Refer to Section 7.1 of Spacecraft Attitude Dynamics for a more detailed study of internal energy dissi-
pation in multi-spin vehicles.

Leths , Isωsâ represent the angular momentum of the wheel as expressed inFP , with Is representing
the wheel’s moment of inertia about the spin axis, ωs denoting its rotation rate, and â representing its spin
axis as expressed in FP . Recall the following quantities considered in DUAL-SPIN STABILIZATION:

Tp =
1

2
ω

ᵀ
Iω =

1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) (15.1a)

h2 = h
ᵀ
h = (Iω + hs)

ᵀ
(Iω + hs) (15.1b)

both of which were shown to be constant for a rigid carrier with a rigid wheel. It should be noted that ω, h,
andI are all expressed inFP . As a result of internal energydissipation, the energy sinkhypothesis postulates
thatTp should slowly decrease until it reaches aminimumvalue, whileh is assumed to remain constant. The
following constrained optimization problem is, thus, formulated:

Objective : min
ω

{
ω

ᵀ
Iω − (Iω + hs)

ᵀ
(Iω + hs)

λ

}
(15.2)
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where λ is a Lagrangemultiplier that is used to adjoin the original objective function, 2Tp = ω
ᵀ
Iω, with the

equality constraint (Iω+hs)
ᵀ
(Iω+hs) = h2 = constant. The stationary points corresponding to the local

minima or maxima are obtained by:

∂

∂ω

(
2Tp −

h2

λ

)
= 2I

(
ω − Iω + hs

λ

)
= 0 (15.3)

from which one can conclude that the extrema of Tp subject to the constant h constraint occur when:

ω0 =
Iω0 + hs

λ
⇒ h0 = λω0 ⇒ ω×

0 (Iω0 + hs) = 0 (15.4)

which is equivalent to theequilibriumconditionencountered inDUAL-SPINSTABILIZATION. Tocheckwhether
the extremum of interest is a local minimum or a local maximum, the Hessian of Tp is required.

Letω = ω0 + δω. We then have:

∆Tp0
, Tp − Tp0

=
1

2
ω

ᵀ
Iω − 1

2
ω

ᵀ
0 Iω0 = ω

ᵀ
0 Iδω +

1

2
δω

ᵀ
Iδω (15.5)

but the problem’s constraint requires that |h|2 = |h0|2 = h2, which expands as :

[I(ω0 + δω) + hs

]ᵀ[
I(ω0 + δω) + hs

]
= (Iω0 + hs)

ᵀ
(Iω0 + hs) (15.6)

simplifying which further yields:

h
ᵀ
h− h

ᵀ

0h0 = 2δω
ᵀ
I���

���:
= h0 = λω0

(Iω0 + hs) + δω
ᵀ
I2δω = 0 ⇒ 2λω

ᵀ
0 Iδω = −δω

ᵀ
I2δω ≈ 0 (15.7)

where ω
ᵀ
0 Iδω ≈ 0 may be neglected to obtain a first order approximation. We can also use Eq. (15.7) to

express one of δω’s components in terms of the other two, whichwill later be treated as the two independent
variables of the problem:

ω01I1δω1 + ω02I2δω2 + ω03I3δω3 = 0 ⇒ δω3 = −ω01I1δω1 + ω02I2δω2

ω03I3
(15.8)

Now, pre-multiplying Eq. (15.5) by 2λ and employing the right-hand side result in Eq. (15.7) yields:

2λ∆Tp0
=���

��:
−δωᵀ

I2δω

2λω
ᵀ
0 Iδω + λδω

ᵀ
Iδω = δω

ᵀ
I(λ1− I)δω (15.9)

which can be expanded in component form and written, using Eq. (15.8), as:

2λ∆Tp0 = δω2
1I1(λ− I1) + δω2

2I2(λ− I2) +
(ω01I1δω1 + ω02I2δω2

ω03I3

)2
I3(λ− I3) (15.10)

which can, finally, be further expanded and recast in the following form:

[
δω1 δω2

]
H

[
δω1

δω2

]
= ∆Tp0 (15.11)

where it is evident that ∆Tp0
> 0 corresponding to a local minimum of Tp0

requires a positive-definite
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Hessian,H . The following conditions should be satisfied in order forH to possess this property:

0 < λ
[
I1(λ− I2)ω2

01 + I2(λ− I1)ω2
02

]
(15.12a)

0 < λ
[
I2(λ− I3)ω2

02 + I3(λ− I2)ω2
03

]
(15.12b)

0 < λ
[
I3(λ− I1)ω2

03 + I1(λ− I3)ω2
01

]
(15.12c)

0 < I1(λ− I2)(λ− I3)ω2
01 + I2(λ− I3)(λ− I1)ω2

02 + I3(λ− I1)(λ− I2)ω2
03 (15.12d)

The condition inEq. (15.12d), togetherwith oneof the conditions amongEqs. (15.12a), (15.12b), and (15.12c)
satisfies the other two, leading to the “major axis rule” (presented earlier in SPIN STABILIZATION for gyrostats
with platform energy dissipation). Similar - but less general - conditions can be derived using the same
approach for the two special cases considered in DUAL-SPIN STABILIZATION.

Nominally Non-Spinning Platform

Following a similar approach to themore general one presented thus far andused to obtain Eq. (15.12) (since
they cannot be directly applied here for λ→∞), and lettingω0 = 0 andω = δω, we have:

Tp0
=

1

2
ω

ᵀ
0 Iω0 = 0 , ∆Tp0 =��

��*
0

ω
ᵀ
0 Iδω +

1

2
δω

ᵀ
Iδω =

1

2
δω

ᵀ
Iδω (15.13)

Figure 15.1: Direction
Cosines

where Eq. (15.5) is used. The energy change ∆Tp0
is shown to be positive, owing

to the moment of inertia matrix’s positive-definiteness, even before the constant h2

constraint is imposed. Thismeans anymotion of the quasi-rigid carrier in this nom-
inally non-spinning case increases the Tp energy of interest.

The total angular momentum can be resolved in frame FP in terms of its direc-
tion cosines:

h = Iω + hs = Iδω + hs ⇒ Iδω + hsâ = hĉ , ĉ ,

cos(θ1)

cos(θ2)

cos(θ3)

 (15.14)

where θi represents the angle from ˆ
~
p
i
to
~
h, shown in Figure 15.1. The constant h assumption is evoked,

leading to h ≈ hs in this case. Solving Eq. (15.14) for δω and substituting the result into Eq. (15.13) yields:

∆Tp0
=
h2

2

[ (c1 − a1)2

I1
+

(c2 − a2)2

I2
+

(c3 − a3)2

I3

]
> 0 (15.15)

for which to be 0, in accordance with our energy sink hypothesis, we need ci = ai for all i ∈ {1, 2, 3}. The
conclusion is that a gyrostat with a nominally non-spinning quasi-rigid platform will have its body-fixed
wheel spin axis, ˆ

~
a, asymptotically approaching

~
h.
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Wheel Aligned with System Principal Axis

As considered in DUAL-SPIN STABILIZATION, in this case a nominal angular velocity vector along one of the
overall principal axes of the body (assumed, without loss of generality) to be the 2-axis, ˆ

~
p
2
) is achieved:

ω0 =

0

ν

0

 , ω = ω0 + δω =

 δω1

ν + δω2

δω3

 (15.16)

Following a similar approach to that used to obtain the conditions in Eq. (15.12) (since they cannot be
directly applied owing to their use of Eq. (15.8) which is rendered invalid with ω03 = 0), the following condi-
tions for positive-definiteness ofH are arrived at:

0 < λI2(λ− I1)ν2 ⇒ λ(λ− I1) > 0 (15.17a)

0 < λI2(λ− I3)ν2 ⇒ λ(λ− I3) > 0 (15.17b)

where λ = I2 + hs/ν from left-hand side of Eq. (15.4). These conditions can be broken down as follows:

λ > I1 and λ > I3 or λ < 0 (15.18)

Figure 15.2: Dual-Spin Ω̂po = 0.5
with Energy Dissipation [Hughes]

(used with permission)

The left-hand side set of conditions in Eq. (15.18) implies I2 + hs/ν,
the system’s “modified” inertia owing to the wheel’s rotation, should be
larger than the two principal inertias. The right-hand side condition is
amore restrictive analogue of theλ < I1 andλ < I3 condition seen be-
fore for a gyrostatwitha rigidplatform. Therefore, thisparticular typeof
gyrostat can stabilize both its minor and intermediate axes with a suit-
able choice ofhs. UnlikeDUAL-SPIN STABILIZATION, however, satisfying
the conditions in Eq. (15.18) will now guarantee asymptoticω-stability,
since ω(t) → ω0 as t → ∞. The previously stable (with a rigid plat-
form) case ofλ < I1 andλ < I3 (but both non-negative) will now result
in instability. A sample k1−k3 stability diagram, with k1 , (I2−I3)/I1

and k3 , (I2− I1)/I3, and using Ω̂p0 , hs/(ν
√
I1I3) = 0.5 is shown in

Figure 15.2, and should be compared against Figure 14.4 of DUAL-SPIN
STABILIZATION that uses the same Ω̂p0

but disregards energy dissipation.

Note: Recall, from STABILITY, the consequences of adding a damping term to a conservative gyric system: if
it was statically stable, it becomes asymptotically stable; if it was gyrically stable, it becomes unstable.
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