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Lecture 16

Disturbance Torques

Overview

Although disturbing torques due to the spacecraft’s environment are, in an absolute
sense, “small”, their presence still has a noticeable influence owing to the lack of
other major forces, such as large gravitational forces. The following major sources of

disturbance torques are considered:

Figure 16.1: Overview

* magnetic field: magnetic and Lorentz forces on moving dipoles and charges
¢ aerodynamic forces: lift/drag forces from residual atmospheric particles
e solar radiation pressure: from photons’ transfer of momentum upon “impact” on spacecraft’s surface

¢ gravity gradient: from a varying spectrum of gravitational forces on different parts of spacecraft

The following relationship from Dynamics will be used to model the torque, 7, on a rigid body and resulting

from each of the above forces, f, as depicted in Figure 16.1:

2= ([ o g0 av w6
|4

where p represents the position of a differential mass element, dm = o(p) dV (with o denoting volumetric
mass density), relative to a body-fixed reference point, taken to be O = @.
Magnetic Torque

This source is particularly noticeable for near-Earth spacecraft that experience larger geomagnetic field,
which falls off proportionally to 1/r3, where r is the distance from Earth’s centre. External torque is ap-
plied on the spacecraft as a result of the interaction of its magnetization (accumulated from electric currents
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LECTURE 16. DISTURBANCE TORQUES

running through the on-board electronics or magnetic torquers, or from permanent magnets) with Earth’s
magnetic field. We have:

Tmag =M X b (16.2)

where m is the spacecraft’s net magnetic dipole moment and b de-

_.»4 Spacecraft

Magnetic

notes the geomagnetic field vector, subject to both spatial and temporal Magnetic

changes. For current coils, such as those present in magnetic torquers
(used for attitude control purposes), m(t) = i(t)An, where i is the elec-
tric current, A is the coil’s cross-sectional area, and 7 represents the unit
normal to the cross-section.

Note: If the spacecraft’s m = 0, it remains 0 for all attitudes, unless it is
actively modified to control the attitude. Figure 16.2: Latitude [Hughes]
(used with permission)

Several models that attempt to describe the geomagnetic field have
been proposed. The “tilted dipole” model is a simple one that considers Earth as a large tilted magnet, and
associates some magnetic potential with any spatial point in its vicinity:

o, = J:—’; sin(Am) (16.3)
where r and \,, are the point’s distance from Earth’s centre and latitude with respect to the geomagnetic
equator, shown in Figure 16.2, and y.,, = 10'” Wb - m is Earth’s dipole strength.

The International Geomagnetic Reference Field (IGRF) “spherical harmonics” model of Earth’s magnetic
field fits certain functions, namely the spherical harmonics encountered in ORBITAL PERTURBATIONS, to a
series of past measurements, hence constructing an observation-based statistical model. This approach
determines the field potential to k' degree as follows:

k Raynt+l O . . .

®,, = Rg ; (T@) mz::() [gn cos(mn) + hJ sm(mn)}Pn (¢) (16.4)
where P are Schmidt-normalized Legendre functions, and /. and g, are
the so-called Gaussian coefficients of degree n and order m, obtained from
periodically-updated IGRF tables. Earth’s average radius is denoted by R,
and the spherical coordinates r, ¢, and 7 represent distance, coelevation
(¢ = 90° — \), and East longitude from Greenwich (which itself has a lon-
gitude of 1), respectively, and are depicted in Figure 16.3.

Once ,,, is obtained using one of the models such as those above, the
magnetic field vector can be calculated usingy = —V®,,. Forak = 1 Figure 16.3: Coordinates

degree spherical harmonics model (that collapses down to the tilted dipole
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LECTURE 16. DISTURBANCE TORQUES

model), the following spherical components of b are obtained:

- 7%}? _ 2<%)3 [g? cos(¢) + (g3 cos(n) + hy sin(n)) sin(qS)} (16.5a)
by — 7%2%1; _ (%)3 [g? sin(¢) — (gq cos(n) + hisin(n)) cos(qS)} (16.5b)
b= e~ () [ohsin() i costo)] (16.50
where, based on the 2015 values of the 12" generation IGRE ¢ = —29442.0 nT, g = —1501.0 nT, and

hi = 4797.1 nT. The IGRF table also includes predictions of secular variations, reported in n'T/yr from
2015 to 2020, associated with each coefficient.

Aerodynamic Torque

Torques are exerted on spacecraft as a result of aerodynamic forces imparted by the residual atmosphere, but
since the particles’ density is very low, continuum fluid mechanics can no longer be applied. Since this type
of disturbance is proportional to atmospheric density, it falls off exponentially with distance and becomes
negligibly small beyond r = 10® km from Earth's centre.

The following assumptions are made in this section in order to model aerodynamics torques:

* atmospheric thermal motion much smaller than spacecraft’s speed, implying v ~ 0 before impact
 complete loss of momentum of arriving molecules, resulting in v = v,,4;; upon impact

e nominally non-spinning spacecraft

Consider a streamtube of length vd¢, as shown in Figure 16.4, through which a mass of ém passes over
time §¢. We have:

dm = 0qvdt dA = 0,v6t(V-n) dS , D-1 = cos(ay) (16.6)

where o, represents atmospheric density and dS is a differential surface ele-
ment (with outward unit normal, 72) projected onto dA, normal to v. There

is an angle of o, between i and v, which changes as the direction of “flow”
changes. The linear momentum of the particles before and after surface inter-

. Figure 16.4: Streamtube
action can be expressed as:

om0

(16.7)

p(t) =

—

\1e>

0, p(t+dt) =dmy = a,0%5t COS(oza)dSv
- v

using which with p* = f, the differential force on the surface due to the impending air molecules, illustrated
in Figure (16.5), can be determined:

dp . p(t+dt)—p(t) 2 A
i 61t1210 s —Oav cos(0g)dSY = —df aer (16.8)

Integrating this result over the entire “wetted” surface, parts of the surface area that are actually in contact
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with the streamtube considered, provides the total aerodynamic force on the spacecraft:

Faer = —0a0°0 //y -1 dS (16.9)

i
Swet

where S.,; includes only portions of the surface facing the flow, hence satisfying © - n > 0. Finally, the total

aerodynamic torque (about the centre of mass) is determined:

_ Aswet
Taer = Cpger X .faer » Cpaer — (16.10)

where p and ¢, are the position vectors of a differential surface element and the centre of aerodynamic
pressur;, measured from the centre of mass. To extend this result to spinning spacecraft, the change in
the air molecules’ relative velocity from one point on the spacecraft to the other must be considered: v =
Yag — W X p, where y,q is the atmospheric velocity with respect to the centre of mass and w is the space-
craft’s angular velocity with respect to the atmosphere, but it could be approximated as its inertial angular

velocity.

Note: These relationships are not valid for launch or landing. Regular aerodynamics
(with continuum fluid mechanics) relationships, similar to those in LAUNCH VEHI-

cLE DyNnaMics, should be used for those stages of the mission.

Figure 16.5:
atmospheric drag

Solar Radiation Pressure Torque

Transfer of momentum from photons impending on the surface of spacecraft causes small forces that, de-
pending on the size and reflective properties of the surface, can add up to become noticeable. Solar radia-
tion forces fall off proportionally to 1/72, where r is the distance from Sun. In order to model solar radiation
torques in this section, total absorption of the light rays by the surface material is assumed, even though
there will always be at least some reflection involved. The differential force is given by:

(16.11)

Adf sor = —Ps8 dA=—Py(8-1)8dS , cos(as)=§-

1S
1S

where, once again and as depicted in Figure 16.6, d A represents the projection of d.S, this time in the Sun’s
direction, represented by 5. Solar radiation pressure, P, is a function of radial distance from Sun, and
P, ~ 4.5 x 107% N/m? close to Earth’s orbit, varying by approximately 6% over the course of Earth’s el-
liptic orbit. Integrating Eq. (16.11) over the entire “wetted” surface, parts of the surface area that are lit by

sunlight, provides the total solar radiation force on the spacecraft:

Ssot = —Psé//é-'r} ds (16.12)

Stit
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where Sy, includes only portions of the surface facing Sun, hence satisfying 5 - n > 0. Finally, the total solar

radiation torque (about the centre of mass) is determined:

A Siit _'
Tsol = Cpoo X f Cpot = g (16.13)
5so SPsol J sol v ZPsol ffﬁ 7_’1;dS
Stit
where p and ¢,,,, are the position vectors of a differential surface element and the df Sun@®

centre of solar radiation pressure, measured from the centre of mass.

Note: In addition to the solar effects, Earth-orbiting spacecraft are also affected by
both reflection from and emission of radiation by Earth.
Figure 16.6: Radiation

Gravity Gradient Torque

Resulting from non-uniform spatial distribution of the gravitational field and the varying magnitude and
direction of the gravitational forces on spacecraft’s body, gravity gradient exerts disturbance torques that

modify the spacecraft’s rotational motion.

The differential gravitational force on an infinitesimal mass element, dm, lo-

cated at a relative position of p from the spacecraft’s centre of mass as shown in

Figure (16.7), is given by:

-GM d
df = —— "  r—ra+p (16.14)

r3

Figure 16.7: Gravity
where 7 and rg are the position, relative to the centre of Earth, of the mass element and the spacecraft’s

centre of mass. The squared norm of r can be expressed as:

rP=r-r=(rg+p) (rg+p) =ra+2p re+p’ (16.15)

taking which to the power of (—3/2) yields:

2 2

2p -7 2\ —3/2
re® i 4 )
" "

= (20 e+ ) =g (14 (16.16)
but noting that p < r@, we can make use of the approximation (1 + z)" ~ 1 + nz for |z| < 1 to expand
Eq. (16.16) as follows:

~0
3/2p-7 2 . 2
S mrgd {1—7(73 2+ 5|~y {1—33 -2 +%ﬂ (16.17)
2 S e T e
substituting which back into Eq. (16.14) and letting ;« £ GM vyields:
—pdm P T
df ~ —3 (1 =353 )(Ee +p) (16.18)
pa re re -
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Lastly, the total gravitational torque on the spacecraft about its centre of mass can be computed:

e

expanding and simplifying which, noting that r@ remains constant over the volume, results in:

0
- 3
Tgg = Tg,:t // pokp) dV x T + % ///(/3 x1@)(p-1@)o(p) dV (16.20)
14

where the first term vanishes by definition of centre of mass from Dynamics and our choice of O =

0
qe)(g%/e'ﬁg x r@)o(p) AV (16.19)

Upon resolving all vectors in a body-fixed frame, .% g, with its origin at O, Eq. (16.20) takes on the following
referential form after using p*rg = —rgp:

=3p X X x
o ff v [ i ] e
(16.21)

where the definition of the moment of inertia matrix from DyNaMmics, and the identityba' = a*b* +(a' b)1
from FUNDAMENTALS are used, setting a = b = p for the latter. The gravity gradient torque is, therefore,
represented in the following form:
31
Tgg= FTaJT 16.22
99 r% 4 S ( )

where all column matrices are their corresponding vectors’ expressions in .7 .
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