
AER506 - Fall 2019
B. Vatankhahghadim

Lecture 17

Gravity Gradient Stabilization

A
TTITUDEmotion and its stability under the influence of external torques resulting from gravity gra-
dient are studied. Euler’s rigid body equations are applied, in conjunctionwith the gravity gradient
disturbance torques, and linearized stability analysis is performed, assuming small roll, pitch, and

yaw displacements of the spacecraft.

Overview

SPIN STABILIZATION and DUAL-SPIN STABILIZATION focused on torque-free motion of a spinning spacecraft,
and that of a platform with a spinning wheel, respectively. In contrast, this lesson takes gravity gradient
torques into account, and aims to perform a stability analysis similar to those previously seen. Via judicious
design, naturally-occurring force fields can be exploited for the purpose of passive attitude stabilization that
requires no power, control laws, sensing, etc.

Spacecraft

Earth

Figure 17.1: Orbiting (O)
and Inertial (I) Frames

The following reference frames, shown in Figure 17.1, are used for the pur-
pose of this study:

• FI : inertial frame fixed to (but not rotating with) Earth

• FO: orbiting frame, with origin fixed to spacecraft, 3-axis towards Earth’s
centre, 2-axis anti-parallel to orbital angular momentum,

~
h

• FB : body-fixed frame, with origin at spacecraft centre of mass

A circular orbit is assumed, with a meanmotion of ω0 =
√
µ/r3 .

Based on FUNDAMENTALS, the spacecraft’s attitude with respect to the nominal orbiting frame can be
described using a 3-2-1 rotation matrix:

CBO = C1(δθ1)C2(δθ2)C3(δθ3) ⇒ CBO ≈ 1− δθ× ≈

 1 δθ3 −δθ2
−δθ3 1 δθ1

δθ2 −δθ1 1

 , δθ ,

δθ1δθ2

δθ3

 (17.1)

where δθ1, δθ2, and δθ3 are the infinitesimal roll, pitch, and yaw angles, respectively. Small Euler angle ap-
proximations are used in Eq. (17.1).
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The spacecraft’s position and angular velocity (with respect to FI ) can be resolved in FB as:

r = CBO

 0

0

−r

 =

 r δθ2

−r δθ1

−r

 , ωBI =�
��*

δ
.
θ

ωBO +CBO

 0

−ω0

0

 =

δθ̇1 − ω0δθ3

δθ̇2 − ω0

δθ̇3 + ω0δθ1

 (17.2)

where Eq. (17.1) is used to replace CBO, and assuming a circular orbit, FO’s rotation about its 3-axis at a
constant rate of ω0 (but in the negative ˆ

~
o3 direction) and the constant distance of r between OI and OO

(but in the negative ˆ
~
o1 direction) are used to expressωOIO and rO, the components of the spacecraft’s angular

velocity and position as expressed in FO.

Equations of Motion

Assume the selected body-fixed frame is a principal axes frame; that is, FB ≡ FP . Using the diagonal
moment of inertia matrix, I , associated with such a frame, the gravity gradient disturbance torques can be
determined as derived in DISTURBANCE TORQUES:

τ gg =
3µ

r5
r×Ir (17.3)

in which the left-hand side relationship in Eq (17.2) can be substituted to yield:

τ gg =
3µ

r5

(
r

 δθ2

−δθ1
−1

)×I(r
 δθ2

−δθ1
−1

) = 3ω2
0

 δθ2

−δθ1
−1


×

I

 δθ2

−δθ1
−1

 = 3ω2
0

(I3 − I2)δθ1

(I3 − I1)δθ2

(I1 − I2)��
��:≈0

δθ1δθ2

 (17.4)

where ω0 =
√
µ/r3 owing to the orbit’s circularity assumption is used, and the second order term δθ1δθ2 is

neglected assuming small angles. As usual, I1, I2, and I3 are the spacecraft’s principal moments of inertia,
the components of its diagonal I determined for FP .

The following observations could readily be made about the gravity gradient torque, τ gg :

• It hasno (ornegligible) 3-component (yaw),which seems logical since thegravitational forceacts along
ˆ
~
o3 and its resulting torque will be perpendicular to it.

• Its 1- and 2-components (roll and pitch) are proportional to the roll and pitch angles. Having I3 < I2

or I3 < I1 will, therefore, result in a restoring torque about the roll or pitch axis, respectively.

Neglecting all external torques other thanτ gg , Euler’s rigidbody equations canbewritten in the following
scalar form upon expanding I .ω + ω×Iω = τ gg and simplifying by assuming small angles and rates:

I1δθ̈1 − (I1 − I2 + I3)ω0δθ̇3 + 4ω2
0(I2 − I3)δθ1 = 0 (17.5a)

I2δθ̈2 + 3ω2
0(I1 − I3)δθ2 = 0 (17.5b)

I3δθ̈3 + (I1 − I2 + I3)ω0δθ̇1 + ω2
0(I2 − I1)δθ3 = 0 (17.5c)

which are the roll, pitch, and yaw equations of motion, respectively.
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Attitude stability

The pitch equation is observed to be decoupled from the other two, while the roll-yaw equations are coupled
and should be studied together. Wenowapply our familiar tools of stability analysis to assess the spacecraft’s
attitude stability in each direction.

Pitch Stability

From Eq. (17.5b), we have:
δθ̈2 = β2δθ2 , β2 =

−3ω2
0(I1 − I3)

I2
(17.6)

which was encountered (at times for δωi) in SPIN STABILIZATION and DUAL-SPIN STABILIZATION as well. The
general solution is:

δθ2(t) = Aeβt +Be−βt , β 6= 0 (17.7a)
δθ2(t) = A+Bt , β = 0 (17.7b)

from which the boundedness of δθ2 can be deduced:

• if β2 > 0: eβt →∞ as t→∞, so δθ2 is unbounded.

• if β2 = 0: Bt→∞ as t→∞, so δθ2 is unbounded.

• if β2 < 0: e±βt = cos(∓iβt) + i sin(∓iβt) as t→∞, so δθ2 is bounded.

Thus, pitch stability occurs only when β2 , −3ω2
0(I1 − I3)/I2 < 0, which is satisfied if and only if I1 > I3.

The pitch oscillation frequency is given by:

Ω2 , −β2 ⇒ Ω = ω0

√
3
I1 − I3
I2

(17.8)

whereω0 dependson the size of theorbit, and the square root term is determinedby the spacecraft’smoment
of inertia matrix, I .

Roll/Yaw Stability

From Eqs. (17.5a) and (17.5c), we have the following (reduced) linear mechanical system:

M
..
q +G

.
q +Kq = 0 (17.9)

q ,

[
δθ1

δθ3

]
, M ,

[
I1 0

0 I3

]
, G ,

[
0 −1

1 0

]
(I1 − I2 + I3)ω0 , K ,

[
4(I2 − I3) 0

0 I2 − I1

]
ω2
0

whereM = M
ᵀ
> 0,G = −G

ᵀ
, andK = K

ᵀ
. As discussed previously, such a conservative gyric system:

• is statically stable ifK > 0, satisfied if and only if I2 > I1, I2 > I3.

• may be gyrically stable even ifK ≯ 0, satisfied under certain conditions for I1 and I3.
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Combining these results with the I1 > I3 condition for pitch stability, we observe that three-axis attitude
stability is guaranteed for I2 > I1 > I3. In other words, a spacecraft with its major axis along the orbital
plane’s normal and its minor axis in the nadir direction is gravity gradient-stabilized.

Note: Even though τ gg only acts on pitch and roll, yaw is also influenced owing to the roll/yaw coupling.

To determine the conditions under which gyric stability is achieved (forK ≯ 0), we study the reduced
system’s characteristic equation:

b0r
4 + b1r

2 + b2 = 0 (17.10)

b0 , I1I3 , b1 ,
[
I1I3 + 3(I2 − I3)I3 + (I2 − I3)(I2 − I1)

]
ω2
0 , b2 , 4(I2 − I3)(I2 − I1)ω4

0

We define λ , r2/ω2
0 , and requiring the poles to not be on the right half plane, arrive at the following neces-

sary and sufficient conditions for stability: b0 > 0, b1 > 0, b2 > 0, and b21 − 4b0b2 > 0.
To better understand this result and also convert it into some conditions for k1 , (I2 − I3)/I1 and

k3 , (I2 − I1)/I3, we can divide Eq. (17.10) by I1I3 andmake use of the definition of λ above to arrive at:

r4 + pω2
0r

2 + qω4
0 = 0 , p , 1 + 3k1 + k1k3 , q , 4k1k3 ⇒ λ2 + pλ+ q = 0 (17.11)

the right-hand side relationship of which is obtained by dividing the left-hand side one by ω4
0 . The solutions

of this equation can be categorized as those with real or complex values. For λ ∈ R:

• if λ > 0, r is real, r = ±ω0

√
λ, resulting in unbounded exponential growth of δθ1 or δθ3.

• if λ = 0, r = 0, resulting in unbounded linear growth of δθ1 and δθ3.

• if λ < 0, r is purely imaginary, r = ±iω0

√
−λ, resulting in oscillations of δθ1 and δθ3 for λ1 6= λ2.

For λ ∈ C, λ /∈ R: we have λ = ρeiθ, implying
√
λ =

√
ρeiθ/2, but −π/2 < θ/2 < π/2 (considering

θ /∈ {−π, 0, π}, as they would correspond to real values of λ), which implies
√
λ has a positive real part, and

r = ±ω0

√
λ, resulting in unbounded exponential growth of δθ1 or δθ3.

Among the above possibilities, the only stable case corresponds to λ < 0 with λ1 6= λ2 (since, otherwise,
repeated imaginary poles would result in oscillatory behaviour with unbounded linear growth). This yields
the following stability conditions:

r2 = ω2
0

(−p±√p2 − 4q

2

)
< 0 ⇒ p2 − 4q > 0 , p > 0 , q > 0 (17.12)

where the first condition ensures non-repeated poles, while the second and third conditions guarantee−p+√
p2 − 4q is not positive. Returning to the definition of p and q in Eq. (17.11), the following necessary and

sufficient conditions for roll/yaw stability are obtained:

1 + 3k1 + k1k3 > 0 and k1k3 > 0 and (1 + 3k1 + k1k3)2 − 16k1k3 > 0 (17.13)

When combined with k1 > k3 required for pitch stability (implying I1 > I3), these conditions provide the
so-called “Lagrange region” on the k1 − k3 stability diagram (with k1 > k3 > 0, the same region associated
with static stability), as well as an additional part known as the “DeBra-Delp region” for gyric stability. Such
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diagrams may prove useful for inertia augmentation, which involves designing spacecraft that possess de-
sirable gravity gradient stabilization properties via judicious placement and size of booms with tip masses
in order to modify I as required.

Figure 17.2: Gravity Gradient
[Hughes] (used with permission)

Note: Similarly to the previous cases of gyric stability, the DeBra-Delp
region becomes unstable when damping is introduced, while the La-
grange region becomes asymptotically stable.

We can summarize the roll/yaw stability regions as follow:

• Lagrange region: I2 > I1 > I3, a combination of major axis spin
(about ˆ

~
p
2
, which is almost along ˆ

~
o2) with a favourable (restoring)

τ gg owing to k1 > 0 and k3 > 0

• DeBra-Delp region: a combination of minor axis spin (stable in
the absence of damping) dominating over unfavourable τ gg ow-
ing to k1 < 0

Note: Gravity gradient stabilization is very coarse, some times to only
within ±20◦. Active attitude control, to be discussed next, is required
for higher accuracy.
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