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Lecture 18

Active Attitude Control

F
UNDAMENTALS of active attitude control are discussed. Mathematical basics of control systems, in-
cluding Laplace transform and its properties, transfer functions, and interconnections of systems
are reviewed. Lastly, simple feedback attitude control laws are presented, and the step input re-

sponse of a proportional-derivative controlled spacecraft is examined.

Overview

Passive control schemes, such as using gravity gradient stabilization, can only provide coarse attitude con-
trol that may not meet somemissions’ pointing or rotational rate requirements. Active control is, therefore,
required to continuouslymeasure and correct for, using judiciouslymodified forces and torques, deviations
from the desired attitude.

In general, the objective of active attitude control is to eliminate or minimize the error, δθ(t) = θ(t) −
θref (t), taking into account that measurements of the output, θ̃, inevitably include sensor noise, δθn. The
reference attitude, representedbyθref , is either pre-programmedor commandedon-linebymission crewor
ground operators. To achieve this objective, control torques, τ c(t), are applied via actuators, in conjunction
with external disturbance torques, τ d(t), some sources of which were discussed in DISTURBANCE TORQUES.
An overview of the attitude control system of interest is provided in Figure 18.1.
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Figure 18.1: Overview of Spacecraft Attitude Control System
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Laplace Transform

Recall Laplace transform that maps a function from t-domain to s-domain:

L [f(t)] =

∞∫
0

f(t)e−st dt , f(s) (18.1)

which can be used to transform linear ODEs to algebraic equations using its differentiation properties. For
the function’s first time-derivative, for example, we have:

L [ḟ(t)] =

∞∫
0

ḟ(t)e−st dt = f(t)e−st
∣∣∣∞
0
−
∞∫
0

f(t)
(
− se−st dt

)
= −f(0) + sf(s) (18.2)

where integration by parts is used. Successive applications of this property yields, for the nth derivative:

L [f (n)(t)] = snf(s)−
n∑
k=1

sk−1f (n−k)(0) (18.3)

Laplace transform enjoys a number of other important properties, such as:

L [af(t) + bg(t)] = af(s) + bg(s) (18.4a)

L [f(t) ∗ g(t)] = L
[ t∫

0

f(τ)g(t− τ) dτ
]
= f(s)g(s) (18.4b)

f(0+) = lim
s→∞

sf(s) , lim
t→∞

f(t) = lim
s→0

sf(s) (18.4c)

which are the linearity property, convolution theorem, and initial and final value theorems, respectively.

Transfer Function

Any control system can be represented using an operator that maps the input(s), u(t), to the output(s), y(t).
For the control laws of interest to us, this mapping can be represented in the s-domain using a transfer
function (or matrix, for multiple inputs and outputs):

y(s) = G(s)u(s) (18.5)

where, in general, the transfer function, G(s), is of the following form:

G(s) =
a0s

m + a1s
m−1 + · · ·+ am

sn + b1sn−1 + · · ·+ bn
(18.6)

the zeros of the numerator of which provide the system’s zeros, and those of the denominator are called the
system’spoles. For stability, nopoles shouldbeon the right half of the complexplane (positive real parts), and
no repeated poles should appear on the imaginary axis. The input response of the system in the t-domain
can be obtained by y(t) = L −1[Gu], where, for example, u = 1 for an impulsive input, u = 1/s for a step
input, and u = 1/s2 for a ramp input.
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Interconnection of Systems

The overall transfer functions associated with various interconnections of multiple control systems, repre-
sented in Figure (18.3) using block diagrams, are provided by:

(a) Series Connection: y = (GH)u

(b) Parallel Connection: y = (G+ H)u

(c) Feedback Interconnection: y =
( G
1 + GH

)
u

G H
u y

(a) Series Connection

G

H

u

y1

+

y2

y

(b) Parallel Connection

G

H

u + y

−

(c) Feeback Interconnection

Figure 18.3: Interconnection of Two Systems

In preparation for the active attitude control problem, we can treat the reference desired output as an
input to the system, and let the input of the controller be the error (the difference between the desired and
the actual system output): defining δy(t) = yref − y(t) with Laplace transform δy(s) = yref (s) − y(s),
and letting the controller react to the error as uc = Kδy, we have the feedback system shown below, where
H(s) = 1 for this case and the process noise, ud(s), is also included.

K G

H

yref + δy uc

ud
+

y

−

Figure 18.4: Feedback System using Reference Signal and Output Error
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Attitude Control Problem

Weconsider theproblemof 3-axis attitude control of a principal axes frame,FP , with respect to an inertially-
fixed nominal frame, FI . Euler’s rigid body equations form DYNAMICS are recalled:

I
.
ω + ω×Iω = τ c + τ d (18.7)

where the subscripts ‘c’ and ‘d’ distinguish the control torques from the disturbance torques. Assuming
infinitesimally small angles, ω ≈ δ

.
θ from KINEMATICS, which yields the following linearized form of the

equations of motion in Eq. (18.7):

Iδ
..
θ +��

���:≈ 0
δ
.
θ×Iδ

.
θ ≈ Iδ

..
θ ≈ τ c + τ d (18.8)

where small rates are also assumed. Since these equations are now decoupled, they can be considered sep-
arately. The following scalar equation for each axis will, therefore, be the focus of the rest of this lesson:

Iθ̈(t) ≈ τc(t) + τd(t) (18.9)

where δθ is replaced by θ for brevity. Taking the Laplace transform of Eq. (18.9) yields:

Iθ̈(t) = τc(t) + τd(t)
L
=⇒ I

[
s2�(s)− sθ(0)− θ̇(0)

]
= �c(s) + �d(s) (18.10)

Feedback Control

Since we expect non-zero initial conditions (ICs) to eventually disappear and we are more interested in the
input response, we let �(0) = �̇(0) = 0, which simplifies Eq. (18.10) as follows:

� =
�c +��>

≈0
�d

s2I
≈ 1

Is2
�c ⇒ � = G�c , G ,

1

Is2
(18.11)

where small disturbance torques, at least compared to the control inputs, are assumed. The plant transfer
function is represented by G, which has a pair of repeated poles at s = 0, hence making such an open-loop
system unstable. To remedy this situation, we incorporate feedback control.

P Control

The proportional control torque is set to be proportional to the attitude error. Disregarding disturbances
and using zero ICs, we have:

Iθ̈ = τc = Kp

(
θref − θ

) L
=⇒ Is2� = Kp

(
�ref − �

)
(18.12)

the controller and the closed-loop transfer functions of which are found to be as follow:

�c = Kec , ec , �ref − � , K , Kp and � =
Kp

Is2 +Kp
�ref =

GK
1 + GK

�ref , G ,
1

Is2
(18.13)
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where the same plant transfer function G as in Eq. (18.11) is used. The closed-loop control law can also be
visualized, as in Figure 18.5, using a negative-feedback diagram involving a series interconnection of G and
K, andaunity feedback gainofH = 1. The combined transfer functionGK is knownas theopen-loop transfer
function, the poles of which can also be used for stability analysis purposes.

K = Kp G =
1

Is2

�ref + e �c

�d ≈ 0
+

�

−

Figure 18.5: Feedback System using Reference Signal and Output Error

PD Control

Theproportional-derivative control torque is set to receiveproportional contributions fromboth theattitude
error and the attitude rate error. Disregarding disturbances and using zero ICs, we have:

Iθ̈ = τc = Kp

(
θref − θ

)
+Kd

(
θ̇ref − θ̇

) L
=⇒ Is2�(s) = Kp

(
�ref − �

)
+Kds

(
�ref − �

)
(18.14)

the controller and the closed-loop transfer functions of which are found to be as follow:

�c = Kec , ec , �ref − � , K , Kds+Kp and � =
Kds+Kp

Is2 +Kds+Kp
�ref =

GK
1 + GK

�ref , G ,
1

Is2

(18.15)
where the same plant transfer function G as in Eq. (18.11) is used. Similar comments to the P law can be
made about the negative-feedback interconnections represented by this relationship.

We now reconsider the disturbance torque, τd(t) 6= 0, and assume a constant reference input, θref , that
implies θ̇ref = 0. We furthermore consider the steady-state case with θ̇ = θ̈ = 0 as t → ∞, using which
Eq. (18.14) becomes:

I�
��>

0
θ̈(t) = τc(t) + τd(t) = Kp

(
θref − θ

)
−Kd�

��
0

θ̇ + τd ⇒ e , θref − θ =
−τd
Kp

(18.16)

This implies that although PD law eliminates the oscillations in attitude in the long term, it cannot remove
the steady-state errors. This provides the motivation behind adding an integral term.

Response to Step Attitude Command

Let us focus on one of the most common attitude control laws, namely PD control. From Eq. (18.15), the
corresponding closed-loop transfer function is given by:

�(s)
�ref (s)

=
Kds+KP

Is2 +Kds+Kp
=

Kd

I
s+

KP

I

s2 +
Kd

I
s+

KP

I

(18.17)
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which can be rewritten in the following form:

�(s)
�ref (s)

=
2ζω0s+ ω2

0

s2 + 2ζω0s+ ω2
0

, ζ ,
Kd

2

√
1

KP I
, ω0 =

√
Kp

I
(18.18)

where ζ is known as the system’s damping ratio andω0 is itsundamped natural frequency. The characteristic
equation of the system and its solutions, known as the closed-loop poles, are given by:

s2 + 2ζω0s+ ω2
0 = 0 ⇒ s1,2 =

−2ζω0 ±
√

4ζ2ω2
0 − 4ω2

0

2
= −ζω0 ∓ iωd , ωd , ω0

√
1− ζ2 (18.19)

whereωd is the system’sdampednatural frequency. The size of the damping ratio dictates the system’s overall
behaviour:

• 0 = ζ: purely imaginary pair of poles resulting in pure oscillation (undamped)

• 0 < ζ < 1: complex conjugate pair of poles resulting in decaying oscillation (underdamped)

• 1 = ζ: purely real (negative) poles resulting in boundary of exponential decay (critically damped)

• 1 < ζ: distinct purely real (negative) poles resulting in exponential decay (overdamped)

We now consider, as an input, a step attitude command of θref (t) = CH(t) = C for t > 0, whereH(t) is
the Heaviside function andC is the constant step amplitude. Recall that the Laplace transform of this input
is �ref (s) = C/s.

Transient Response

The closed-loop transfer function in Eq. (18.18) yields, for the Laplace transform of the normalized output:

�
C

=
2ζω0s+ ω2

0

s2 + 2ζω0s+ ω2
0

· 1
s
=

1

s
+

−s
s2 + 2ζω0s+ ω2

0

(18.20)

where partial fractions are used to separate the rational functions into additive terms. Furthermanipulation
of Eq. (18.20), by completing the square in the denominator and rewriting the numerator to reach familiar
Laplace transform functions, yields:

�
C

=
1

s
− s+ ζω0

(s+ ζω0)2 + ω2
d

+
ζω0

ωd
· ωd
(s+ ζω0)2 + ω2

d

(18.21)

whereω2
d = ω2

0(1−ζ2) fromEq. (18.19) is used. Taking the inverse Laplace transformof Eq. (18.21) produces
the time-domain response of the system to a step function for t > 0:

θ(t) = C − Ce−ζω0t
(
cos(ωdt)−

ζω0

ωd
sin(ωdt)

)
(18.22)

where the property that L [e−atf(t)] = f(s + a) is used. It is evident that the desired behaviour can be
achieved by setting ω0 and ζ according to the mission requirements.

The following specifications pertinent to the transient response of such systems are commonly used in
literature:

• rise time to reach the final value, θ(tR) = C, or to go from 10% to 90% of the step input
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• settling time to reach and remain within 2% of the final value

• overshoot reported as maximum percentage of output exceeding the final value

Note: Refer to Section 17.7.1 of Spacecraft Dynamics and Control: an Introduction for details on how each of
these parameters can be estimated.

Steady-State Response

The final value theorem of Laplace transform from Eq. (18.4c) can be used to study the steady-state value of
the output subject to the PD law of interest:

lim
t→∞

θ(t) = lim
s→0

sθ(s) = lim
s→0 �

s
2ζω0s+ ω2

0

s2 + 2ζω0s+ ω2
0

· C
�s

=
C��ω

2
0

��ω
2
0

= C (18.23)

which establishes the fact that, in the absence of disturbance torques, a PD law would suffice for the space-
craft to asymptotically approach a commanded attitude of θref = C.
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