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Lecture 19

Bias-Momentum Stabilization

D
YNAMICS of spacecraft under gravity gradient with actively-controlled wheels are considered. Lin-
earized pitch and roll/yaw equations of motion are used in conjunction with modified P- and
PD-type feedback control laws, and the system’s resulting stability properties and steady-state be-

haviour are studied.

Overview

Bias-momentum-stabilized spacecraft are similar to gyrostats considered in DUAL-SPIN STABILIZATION, but
instead of large external rotors, they have relatively small rapidly spinning internalwheels that provide gyric-
ity beneficial to attitude stabilization. They also tend to rely more heavily on active control than gyrostats
typically do, and bias-momentum stabilization can generally be considered as an amalgam of passive dual-
spin stabilization and active attitude control in the presence of gravity gradient.

Spacecraft

Earth

Figure 19.1: Orbiting (O)
and Inertial (I) Frames

The following advantages motivate bias-momentum stabilization:

• providing short term stability against disturbances, similarly to spin sta-
bilization

• increasing roll/yaw coupling, hence reducing the need for yaw sensing,
which is difficult because the body-fixed frame measurements of the
spacecraft’s position vector relative to Earth do not depend on yaw

• enhancing gravity gradient stabilization as a consequence of having a
wheel nominally aligned with the orbiting frame’s 2-axis (pitch)

Note: As mentioned before, a bias-momentum wheel that remains aligned with the pitch axis and only
changes rate is known as a “reaction wheel”, while one that changes direction from roll/yaw to pitch is a
“control moment gyro” (CMG).

Analogously to GRAVITY GRADIENT STABILIZATION, The following reference frames, shown in Figure 19.1,
are used for the purpose of this study:

• FI : inertial frame fixed to (but not rotating with) Earth
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• FO: orbiting frame, with origin fixed to spacecraft, 3-axis towards Earth’s centre, 2-axis anti-parallel
to orbital angular momentum,

~
h

• FB : body-fixed frame, with origin at spacecraft’s centre of mass

A circular orbit is assumed, with a mean motion of ω0 =
√
µ/r3 . In addition, the wheel’s spin axis is taken

to be along the negative pitch axis, â = −ô2, and its angular momentum is given by hs = Isωsâ. The wheel
is assumed to be spinning rapidly enough to justify taking hs � Iiω0, i ∈ {1, 2, 3}.

Based on FUNDAMENTALS, the spacecraft’s attitude with respect to the nominal orbiting frame can be
described using a 3-2-1 rotation matrix:

CBO = C1(δθ1)C2(δθ2)C3(δθ3) ⇒ CBO ≈ 1− δθ× ≈

 1 δθ3 −δθ2
−δθ3 1 δθ1

δθ2 −δθ1 1

 , δθ ,

δθ1δθ2

δθ3

 (19.1)

where δθ1, δθ2, and δθ3 are the infinitesimal roll, pitch, and yaw angles, respectively. Small Euler angle ap-
proximations are used in Eq. (19.1).

Equations of Motion

We recall the following results (all expressed in FB) from GRAVITY GRADIENT STABILIZATION, with δθ repre-
senting the small roll, pitch, and yaw angles:

ωBI =�
��*
≈ δ
.
θ

ωBO +CBO

 0

−ω0

0

 =

δθ̇1 − ω0δθ3

δθ̇2 − ω0

δθ̇3 + ω0δθ1

 , τ gg = 3ω2
0

(I3 − I2)δθ1(I3 − I1)δθ2
(I1 − I2)����:

≈0
δθ1δθ2

 (19.2)

Euler’s equations of motion in the presence of gravity gradient, control, and disturbance torques (namely
τ gg , τ c, and τ d, respectively) are given by:

.
h+ ω×h = τ gg + τ c + τ d ; h = IωBI + hs , hs =

 0

−Isωs

0

 (19.3)

where, for now, no active torque about the pitch axis is assumed; that is, τc2 = 0.
Expanding and rearranging Eq. (19.3) yields the equations of motion:

I1δθ̈1 −
[
(I1 − I2 + I3)ω0 − hs

]
δθ̇3 +

[
4ω2

0(I2 − I3) + hsω0

]
δθ1 = τc1 + τd1 (19.4a)

I2δθ̈2 + 3ω2
0(I1 − I3)δθ2 = ḣs + τd2

(19.4b)
I3δθ̈3 +

[
(I1 − I2 + I3)ω0 − hs

]
δθ̇1 +

[
ω2
0(I2 − I1) + hsω0

]
δθ3 = τc3 + τd3

(19.4c)

which resemble the equations of motion involved in gravity gradient stabilization, but with the hs effects.
The ḣs term behaves as pitch control provided by gyric effects of the wheel spinning in the pitch direction.

Assuming a rapidly spinning wheel, we let hs = Isωs � Iiω0 for i ∈ {1, 2, 3}, which simplifies the
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equations of motion in Eq. (19.4) for the hs terms inside the brackets dominate:

I1δθ̈1 + hsδθ̇3 + hsω0δθ1 = τc1 + τd1
(19.5a)

I2δθ̈2 + 3ω2
0(I1 − I3)δθ2 = ḣs + τd2 (19.5b)

I3δθ̈3 − hsδθ̇1 + hsω0δθ3 = τc3 + τd3 (19.5c)

which has its pitch equation uncoupled, and its roll/yaw equations coupled together. Similarly to GRAVITY
GRADIENT STABILIZATION, we now treat the control about pitch and roll/yaw axes separately.

Pitch Control

Let us treat ḣs as pitch control torque, τc2 , ḣs, which canbemodifiedby thewheel’s rotation. For simplicity
of notation, we replace δθ2 with θ2, and considering a stabilization problem in the presence of disturbances,
we let θ2ref = 0 and θ2(0) = θ̇2(0) = 0. Taking the Laplace transform of the motion equation in Eq. (19.5b)
results in:

(I2s
2 + C)�2 = �c2 + �d2

, C , 3ω2
0(I1 − I3) (19.6)

Consider the following modified PD control law and its Laplace transform:

τc2 = Kp(�
��>

0

θ2ref − θ2) +Kd(�
��>

0

θ̇2ref − θ̇2) + 3ω2
0(I1 − I3)θ2

L
=⇒ �c2 = −

[
(Kp − C)�2 +Kds�2

]
(19.7)

substituting which into Eq. (19.6) and rearranging yields the following input/output relationship mediated
by the system’s close-loop transfer function:

�2 =
1

I2s2 +�C + (Kp −�C) +Kds
�d2 =

1/I2
s2 + 2ζω0s+ ω2

0

�d , ζ ,
Kd

2

√
1

KpI2
, ω0 ,

√
Kp

I2
(19.8)

where ζ and ω0 are the damping ratio and undamped natural frequency previously encountered in ACTIVE
ATTITUDE CONTROL.

Steady-State Performance

Let there be a constant disturbance torque ofmagnitudeD2 (step input), τ d2 = D2H(t), with Laplace trans-
form �d2 = D2/s. The steady-state value of the pitch output subject to the modified PD law in Eq. (19.7) is
found by:

θss = lim
t→∞

θ2(t) = lim
s→0

sθ2(s) = lim
s→0 �

s
1

I2s2 +Kds+Kp
· D2

�s
=
D2

Kp
(19.9)

where the final value theorem of Laplace transform, mentioned in ACTIVE ATTITUDE CONTROL, is used. This
result implies that the steady-state error in pitch can be reduced by increasing the control gain (whichwould
require more fuel or power), and gain selection can be performed keeping the maximum acceptable θss in
mind. In order to find the wheel’s angular speed required to achieve the desired control torque, τc2(t) =

ḣs(t) = Isω̇s, we have:

Is
(
ωs(t)− ωs0

)
=

∫ t

0

ḣs dt ⇒ ωs = ωs0 +

∫ t

0
τc2 dt

Is
(19.10)
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Roll/Yaw Control

For simplicity of notation, we replace δθ1 and δθ3 with θ1 and θ3, respectively, and considering a stabilization
problem in the presence of disturbances, we let θ1ref = θ3ref = 0, θ1(0) = θ̇1(0) = 0, and θ3(0) = θ̇3(0) = 0.
Taking the Laplace transform of the motion equations in Eqs. (19.5a) and (19.5c) results in:

I1s
2�1 + hss�3 + hsω0�1 = �c1 + �d1

(19.11a)
I3s

2�3 − hss�1 + hsω0�3 = �c3 + �d3
(19.11b)

Consider the following modified P control laws and their Laplace transforms:

τc1 = Kp(��
�*0

θ1ref − θ1) + hsω0θ1
L
=⇒ �c1 = −Kp�1 + hsω0�1 (19.12a)

τc3 = −KrKp(��
�*0

θ1ref − θ1)− hsθ̇1
L
=⇒ �c3 = KrKp�1 − hss�1 (19.12b)

which benefit from using only θ1 and θ̇1 measurements of roll angle and rate, hence circumventing the dif-
ficulties associated with yawmeasurement.

To see onemotivation behind such a selection of control laws, consider the closed-loop roll/yaw dynam-
ics, and assume hsθ̇1 � I3θ̈3 and hsθ̇3 � I1θ̈1 (which are reasonable for a rapidly spinning wheel). Assume,
also, no disturbances:

hsθ̇3 +��
��hsω0θ1 ≈ −Kpθ1 +��

��hsω0θ1 ⇒ hsθ̇3 ≈ −Kp
hsω0

KrKp
θ3 ⇒ θ3 ≈ θ3(0)e−ω0t/Kr (19.13a)

�
��−hsθ̇1 + hsω0θ3 ≈ KrKpθ1 −���hsθ̇1 ⇒ θ1 ≈ θ3(0)

hsω0

KrKp
e−ω0t/Kr

(19.13b)

where Eq. (19.13b) is initially substituted into Eq. (19.13a), and the final result of Eq. (19.13a) is substituted
back into Eq. (19.13b). Both roll and yaw angles asymptotically reach 0, suggesting asymptotic stability in
the absence of disturbances.

Returning to the original (disturbed) roll/yaw equations ofmotion in Eq. (19.11) using the control inputs
in Eq. (19.12), and putting the closed-loop system in matrix form yields:[

I1s
2 +Kp hss

−KrKp I3s
2 + hsω0

][
�1
�3

]
=

[
�d1

�d3

]
⇒

[
�1
�3

]
= G

[
�d1

�d3

]
(19.14)

where G is the system’s closed-loop transfer matrix. The characteristic equation is, thus, given by:

det(G−1) = I1I3s
4 + (KpI3 + hsω0I1)s

2 +KrKphss+Kphsω0 = 0 (19.15)

According to Routh-Hurwitz stability criterion, the system is not asymptotically stable owing to the presence
of a zero coefficient (of s3). We can use the followingmodified PD law instead, with derivative terms added:

τc1 = Kp(�
��>

0

θ1ref − θ1) +Kd(�
��>

0

θ̇1ref − θ̇1) + hsω0θ1
L
=⇒ �c1 = −(Kp +Kds)�1 + hsω0�1 (19.16a)

τc3 = −KrKp(�
��>

0

θ1ref − θ1)−KrKd(�
��>

0

θ̇1ref − θ̇1)− hsθ̇1
L
=⇒ �c3 = Kr(Kp +Kds)�1 − hss�1 (19.16b)
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which result in the following closed-loop dynamics when substituted into Eq. (19.11):[
I1s

2 +Kds+Kp hss

−Kr(Kds+Kp) I3s
2 + hsω0

][
�1
�3

]
=

[
�d1

�d3

]
⇒

[
�1
�3

]
= H

[
�d1

�d3

]
(19.17)

whereH is the system’s closed-loop transfer matrix.

Steady-State Performance

Let there be constant disturbance torques of magnitudeDi (step input), τ d1 = D1H(t) and τ d3 = D3H(t),
with Laplace transforms �d1 = D1/s and �d3 = D3/s. The steady-state values of the roll and yaw outputs
subject to the modified PD law in Eq. (19.16) are found by:

θss = lim
t→∞

θ(t) = lim
s→0

s�(s) = lim
s→0 �

sH

[
D1

�s
D3

�s

]
(19.18)

where θ(t) , [θ1(t) θ3(t)]
ᵀ , and �(s) , [�1(s) �3(s)]

ᵀ , and the final value theorem of Laplace transform is
used again. We thus have:

θss = lim
s→0

[
I3s

2 + hsω0 −hss
Kr(Kds+Kp) I1s

2 +Kds+Kp

]
(I1s2 +Kds+Kp)(I3s2 + ω0hs) + hss(KrKds+KrKp)

[
D1

D3

]
(19.19)

which simplifies as follows:

θss =
1

Kpω0hs

[
ω0hs 0

KrKp KP

][
D1

D3

]
=

[
D1

Kp

KrD1

ω0hs
+ D3

ω0hs

]
(19.20)

As expected based on our choice of control laws in Eq. (19.16) (using θ1 and θ̇1 only), a step disturbance
torque about the yaw axis does not affect roll, while that about the roll axis does influence yaw.
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