
AER506 - Fall 2019
B. Vatankhahghadim

Lecture 2

Kinematics

T
HIS lesson focuses on how motion and time variations of vectors can be described geometrically,
disregarding any external forces and physical laws of nature. Angular velocity is defined and used
to relate derivatives of vectors asmeasured indifferent frames that are rotatingwith respect to each

other. The relationship between angular velocity and various attitude parameterizations is also studied.

Angular Velocity

Consider two reference frames, FA and FB , rotating with respect to each other as shown in Figure 2.1a.
Any generic vector,

~
v, could be fixed in eitherFA orFB , or it could change in both frames. In each of these

cases, how can we describe the change over time, as seen in either FA or FB?
Define the time derivative operators (·)• and (·)◦, corresponding to the time derivatives as measured in

FA and FB , respectively, to act on the vector
~
v as follows:

~
v• ,

d

dt~
v
∣∣∣
FA

,
~
v◦ ,

d

dt~
v
∣∣∣
FB

Since all basis vectors defining the coordinate axes are fixed in their own reference frames, we have:

~
F •A =

d

dt

ˆ~a1

ˆ
~
a2

ˆ
~
a3

 ∣∣∣∣∣
FA

=
~
0 ,

~
F ◦B =

d

dt

ˆ~b1ˆ
~
b2
ˆ
~
b3

 ∣∣∣∣∣
FB

=
~
0 (2.1)

(a) A Vector as Seen in Two Rotating Frames (b) Differential Change of a basis vector of FB

Figure 2.1: Relating Angular Velocity to Differential Changes of a Vector in Rotating Frames
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We now study how one of these basis vectors, ˆ
~
b1 for example, which is fixed in length, changes as seen in

FA: Since FB is rotating with respect to FA, assume the rotation can be described with a constant rate of
φ̇ about the rotation axis, ˆ

~
a (recall Euler axis/angle variables from FUNDAMENTALS). Define

~
ω , φ̇ˆ

~
a.

As illustrated in Figure 2.1b, we have, for the norm of a differential change in ˆ
~
b1:

|dˆ
~
b1| = |ˆ

~
b1⊥| dφ = |ˆ

~
b1| sin θ dφ (2.2)

where ˆ
~
b1⊥ denotes the component of ˆ

~
b1 normal to ˆ

~
a, and θ represents the angle between ˆ

~
b1 and ˆ

~
a. From

the definition of
~
ω above and noting the unit magnitude of ˆ

~
a, we have dφ = |

~
ω|dt, substituting which into

Eq. (2.2) yields:
|dˆ
~
b1| = |ˆ

~
b1| |

~
ω| sin θ dt = |

~
ω × ˆ

~
b1| dt (2.3)

Lastly, since dˆ
~
b1 is normal to both ˆ

~
b1 and

~
ω, it is parallel to their cross product, and from Eq. (2.3) we obtain:

dˆ
~
b1
dt

= ˆ
~
b•1 =

~
ω × ˆ

~
b1 (2.4)

By repeating the same procedure for ˆ
~
b2 and ˆ

~
b3, we conclude:

~
F •B =

ˆ~b
•
1

ˆ
~
b•2
ˆ
~
b•3

 =

~ω × ˆ
~
b1

~
ω × ˆ

~
b2

~
ω × ˆ

~
b3

⇒
~
FB
• =

~
ω ×

~
FB ⇒

~
FB

ᵀ•
=
~
ω ×

~
F

ᵀ
B (2.5)

which is the rate of change of
~
FB , as observed in

~
FA. Expressing

~
ω inFB ,

~
ω = ω

ᵀ
B
~
FB , and usingω

ᵀ
B
~
FB×

~
F

ᵀ
B =

~
F

ᵀ
Bω
×
B from the definition of cross product from FUNDAMENTALS, Eq. (2.5) provides a relationship

for angular velocity, as expressed in FB , in terms of the vectrix
~
FB and its derivative:

~
F

ᵀ
B

•
=
~
ω ×

~
F

ᵀ
B =

~
F

ᵀ
Bω
×
B (2.6)

Angular Velocity and RotationMatrix

Recall, from the definition of a rotation matrix and its symmetry in FUNDAMENTALS, that:

~
FA = CAB

~
FB ⇒

~
F

ᵀ
A =

~
F

ᵀ
BCBA (2.7)

differentiating both sides of which with respect to time, as measured in FA, results in (upon evoking 2.1):

�
��>~

0

~
F

ᵀ
A

•
=
~
F

ᵀ
B

•
CBA +

~
F

ᵀ
B

.
CBA =

~
F

ᵀ
Bω
×
BCBA +

~
F

ᵀ
B

.
CBA (2.8)

whereEq. (2.6) is used and
.
(·) is the timederivative of a scalar-valuedmatrix (which is the same in any frame).

We thus obtain “Poisson’s kinematical equation”:

.
CBA + ω×BCBA = 0 or ω×B = −

.
CBACAB = CBA

.
C

ᵀ
BA (2.9)

which can be numerically integrated to findC(t) uponmeasuringω(t), or to determineω(t) givenC(t).
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Note: Recall, from FUNDAMENTALS, that C ≈ 1 − θ× ≈ 1 − φâ× for infinitesimal angles. Using this sim-
plification and also assuming θ×

.
θ× ≈ 0, Eq. (2.9) reduces to ωB ≈

.
θ, which can be integrated directly to

obtainω(t). However, this does not hold for general rotations.

Additivity of Angular Velocity

We now consider three reference frames, namely FA, FB , and FC , and would like to show that
~
ωBA +

~
ωCB =

~
ωCA, where

~
ωBA denotes angular velocity of FB with respect to FA, and so on. Each of these

vectors can be represented in their respective frame:

~
ωCA =

~
F

ᵀ
Cω

CA
C ,

~
ωCB =

~
F

ᵀ
Cω

CB
C ,

~
ωBA =

~
F

ᵀ
Bω

BA
B (2.10)

From Eq. (2.9), we have:

(
ωCAC

)×
= CCA

.
CAC = (CCBCBA)

( .
CABCBC +CAB

.
CBC

)
(2.11)

where compound rotation relationships from FUNDAMENTALS are used. Expanding Eq. (2.11) yields:

(
ωCAC

)×
= CCB��

���:

(
ωBAB

)×
CBA

.
CABCBC +CCB���

�:
1

CBACAB

.
CBC = CCB

(
ωBAB

)×
CBC +���

��:

(
ωCBC

)×
CCB

.
CBC (2.12)

where Eq. (2.9) is used twice. But we have the following identity mentioned in FUNDAMENTALS:

CCB

(
ωBAB

)×
CBC =

(
CCBω

BA
B

)×
=
(
ωBAC

)× (2.13)

substituting which into Eq. (2.12) produces:

(
ωCAC

)×
=
(
ωBAC

)×
+
(
ωCBC

)× ⇒ ωCAC = ωBAC + ωCBC (2.14)

Lastly, pre-multiplying Eq. (2.14) by
~
F

ᵀ
C or expressing eachω in its own frame results in:

~
ωCA =

~
ωCB +

~
ωBA (2.15a)

ωCAC = ωCBC +CCBω
BA
B (2.15b)

The desired additivity result is achieved in both vectorial and referential forms, expressed via Eqs. (2.15a)
and (2.15b), respectively.

Vector Derivatives in Different Frames

Recall that whenFB has an angular velocity of
~
ω with respect toFA, the time derivative of each of its basis

vectors, ˆ
~
bi, asmeasured inFA is givenbyEq. (2.4), and thederivative of the associated vectrix, alsomeasured

in FA, is provided by Eq. (2.5). We now consider a general vector,
~
r, that is not necessarily fixed in FB (or

FA), unlike ˆ
~
bi. The goal of this section is to relate the derivatives of this vector, as seen in FB and FA.
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First Derivative

We have
~
r =

~
F

ᵀ
ArA =

~
F

ᵀ
BrB . Upon differentiating each expression with respect to time in its own frame,

we obtain:

~
r• =��

��*~
0

~
F •A

ᵀ
rA +

~
FA

ᵀ .
rA ,

~
r◦ =

��
��*~

0

~
F ◦B

ᵀ
rB +

~
FB

ᵀ ◦
rB (2.16)

where the operators
.
(·) and

◦
(·) represent (analogously to (·)• and (·)◦ for vectors) the derivatives of column

matrices, as observed in FA and FB , respectively. But
.
rA =

◦
rA and .rB =

◦
rB , because they have scalar

components and the effects of reference frame have already been extracted via the vectrices
~
FA and

~
FB .

We can, thus, rewrite Eq. (2.16) as:

~
r• =

~
FA

ᵀ .
rA ,

~
r◦ =

~
FB

ᵀ ◦
rB =

~
FB

ᵀ .
rB (2.17)

Starting from
~
r =

~
F

ᵀ
BrB , we differentiate with respect to time once again, but now as observed in

~
FA:

~
r• =�

��>
~
ω ×

~
F

ᵀ
B

~
F •B

ᵀ
rB +

��
��*~

r◦

~
FB

ᵀ .
rB =

~
ω ×��

��*~
r

~
F

ᵀ
BrB +

~
r◦ (2.18)

where Eq. (2.5) is used for
~
F •B

ᵀ
, and the right-hand side equality of Eq. (2.17) is used to replace the second

term, also noting that
~
F

ᵀ
BrB =

~
r holds by definition.

To obtain a similar result to Eq. (2.18) in referential (as opposed to vectorial) form, we make use of the
left-hand side equality of Eq. (2.17) and recall

~
ω = ω

ᵀ
B
~
FB to rewrite Eq. (2.18) as:

~
FA

ᵀ .
rA = ω

ᵀ
B
~
FB ×

~
F

ᵀ
BrB +

~
F

ᵀ
B
.
rB =

~
F

ᵀ
B

(.
rB + ω×BrB

)
(2.19)

where the definition of cross product fromFUNDAMENTALS is used. Lastly, pre-multiplying (scalar) Eq. (2.19)
by
~
FA yields:

��
���:

1

~
FA ·

~
FA

ᵀ .
rA =���

��:CAB

~
FA ·

~
F

ᵀ
B

(.
rB + ω×BrB

)
(2.20)

where the definition of rotation matrices from FUNDAMENTALS is used. We thus conclude from Eqs. (2.18)
and (2.20) that the derivative of a vector (and that of its scalar representation) as measured in FA is related
to its derivative (and that of its scalar representation) as seen in FB (which is rotating at

~
ω with respect to

FA) as follow:

~
r• =

~
r◦ +

~
ω ×

~
r (2.21a)

.
rA = CAB

(.
rB + ω×BrB

)
(2.21b)

The relationships in Eqs. (2.21a) and (2.21b) are known as the vectorial and referential forms of the “trans-
port theorem”, respectively. If, for example,

~
r represents a position vector and

~
FA is a non-rotating inertial

frame, these relationships describe the corresponding velocity vector in the inertial frame, in terms of the
motion observed in the rotating non-inertial frame, FB .

Note: if
~
ω =

~
0, which would imply FB is also an inertial frame, Eq. (2.21a) simplifies to

~
r• =

~
r◦. In other

words, it would no longer matter in which one of the two frames the changes are measured.
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Second Derivative

Recursive application of the first derivative described above could be used to determine how to relate the
second (or higher) derivatives as seen in two frames,FA andFB , where the latter is rotating with respect to
the former with angular velocity

~
ω. We have:

~
r•• = (

~
r•)• = (

~
r◦ +

~
ω ×

~
r)
•
= (

~
r◦)• +

~
ω• ×

~
r +

~
ω ×

~
r• (2.22)

where Eq. (2.21a) is used once. Using the same equation two more times (once for
~
r• and once for (

~
r◦)•),

and noting that
~
ω• =

~
ω◦ +���

�:~
0

~
ω ×

~
ω =

~
ω◦ results in:

~
r•• =

~
r◦◦ +

~
ω◦ ×

~
r + 2

~
ω ×

~
r◦ +

~
ω × (

~
ω ×

~
r) (2.23a)

..
rA = CAB

(..
rB +

.
ω
×
BrB + 2ω×B

.
rB + ω×Bω

×
BrB

)
(2.23b)

which are the vectorial and referential forms of the second derivative as measured in FA, in terms of the
motion in FB . Once again, if

~
r represents a position vector, these relationships describe the associated

acceleration. Following the first term on the right-hand of Eq. (2.23a), the second, third, and fourth terms
are called “tangential”, “coriolis”, and “centripetal” accelerations, respectively.

Relating Angular Velocity to Attitude

With a definition of angular velocity at hand, we now examine how to determine the attitude of an object
using the various representations discussed in FUNDAMENTALS in terms of theω(t) history, or vice versa. To
this end, we consider, once again, FB rotating with respect to FA with an angular velocity of

~
ω, and revisit

the different parameterizations from whichC = CBA could be determined.

Angular Velocity and Euler Angles (θ1, θ2, θ3)

Recall that using Euler angles,C = Cγ(θ3)Cβ(θ2)Cα(θ1) for α, β, γ ∈ {1, 2, 3}. Using Eq. (2.9), we have:

ω× = −
.
CC

ᵀ
= −

( .
CγCβCα +Cγ

.
CβCα +CγCβ

.
Cα

)
C

ᵀ
αC

ᵀ
βC

ᵀ
γ (2.24)

which, using orthonormality of a rotation matrix,CC
ᵀ
= 1, can be expanded and simplified as:

ω× = −
�
��

��*
−
(
θ̇31γ

)×( .
CγC

ᵀ
γ

)
−Cγ

��
��
�*
−
(
θ̇21β

)×( .
CβC

ᵀ
β

)
C

ᵀ
γ −CγCβ

��
��
�*
−
(
θ̇11α

)×( .
CαC

ᵀ
α

)
C

ᵀ
βC

ᵀ
γ (2.25)

where11 = [1 0 0]
ᵀ , 12 = [0 1 0]

ᵀ , and13 = [0 0 1]
ᵀ , and the fact that the angular velocity about a fixed axis,

ˆ
~
a, is given by ω = θ̇â is used. Lastly, making use of the identity (Cu)× = Cu×C

ᵀ
from FUNDAMENTALS,

and equating the terms inside the (·)× in both sides, Eq. (2.25) implies:

ω = θ̇31γ +Cγ θ̇21β +CγCβ θ̇11α = S(θ3, θ2)
.
θ (2.26)

where θ , [θ3 θ2 θ1]
ᵀ and S , [1γ Cγ1β CγCβ1α]. Inverting Eq. (2.26) provides

.
θ = S−1(θ3, θ2)ω that

can be numerically integrated to determine the attitude at each time.
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Note: The singularity issue with Euler angles manifests itself, once again, in singularity of S. For example,
for a 3-2-1 rotation, θ2 = π/2would result in a singular S for which S−1 is no longer defined.

Note: Refer to Table 2.2 of Spacecraft Attitude Dynamics for all 12 inversematrices,S−1, each corresponding
to a different Euler angle sequence.

Angular Velocity and Euler Axis/Angle Variables (ˆ
~
a, φ)

Recall that using Euler axis/angle variables, C = cosφ1 + (1 − cosφ)ââ
ᵀ − sinφâ×. Using Eq. (2.9) and

after algebraic manipulations that are omitted here for brevity, we will eventually obtain:

ω = φ̇â−
[
1− cos(φ)

]
â×
.̂
a+ sin(φ)

.̂
a (2.27)

which providesω in terms of
.̂
a and φ̇. Pre-multiplying Eq. (2.27) by âᵀ yields:

â
ᵀ
ω = φ̇(�

��*
1

â
ᵀ
â)−

[
1− cos(φ)

]
(��

��*

.̂
a
ᵀ
â×â = 0

â
ᵀ
â×
.̂
a) + sin(φ)(�

��>

1
2
d
dt â

ᵀ
â = 0

â
ᵀ .̂
a) ⇒ φ̇ = â

ᵀ
ω (2.28)

where the scalar triple product identity and the constant unit magnitude of â are used for simplifications.
Pre-multiplying Eq. (2.27) once again, but this time by â×â× results in:

â×â×ω = φ̇â×â×â−
[
1− cos(φ)

]
â×â×â×

.̂
a+ sin(φ)â×â×

.̂
a (2.29)

but recalling the identity for a×b× (for generic a and b) from FUNDAMENTALS, we have:

â×â×
.̂
a =

[
ââ

ᵀ
−
(
��
�*1

â
ᵀ
â
)
1
] .̂
a = â�

��>

1
2
d
dt â

ᵀ
â = 0

â
ᵀ .̂
a−

.̂
a = −

.̂
a (2.30)

substituting which back into Eq. (2.29), as well as Eq. (2.27) premultiplied by â×, yields:

â×â×ω =
[
1− cos(φ)

]
â×
.̂
a− sin(φ)

.̂
a (2.31a)

â×ω =
[
1− cos(φ)

] .̂
a+ sin(φ)â×

.̂
a (2.31b)

subtracting the second one of which from the first one, andmultiplying the result by sin(φ)/
[
1− cos(φ)

]
=

cot(φ/2) yields
.̂
a upon rearranging. Given ω, this result and Eq. (2.28) provide the relationships necessary

for determining the derivatives of the Euler axis/angle variables:

.̂
a =

1

2

(
â× − cot

φ

2
â×â×

)
ω , φ̇ = â

ᵀ
ω (2.32)
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Velocity and Euler Parameters (Quaternions) (ε, η)

Recall that using quaternions, ε , â sin(φ2 ) and η = cos(φ2 ), we have C = (η2 − εᵀε)1 + 2εε
ᵀ − 2ηε×.

Having previously looked at
.̂
a and φ̇ above, we can use the quaternions’ definition to find their derivatives:

.
ε =

.̂
a sin(

φ

2
) +

1

2
â cos(

φ

2
)φ̇ =

1

2

[
â× sin(

φ

2
)− â×â×

�
��

�
��
�*

cos(φ2 )

cot(
φ

2
) sin(

φ

2
)
]
ω +

1

2
cos(

φ

2
)ââ

ᵀ
ω (2.33)

where both parts of Eq. (2.32) are used. Upon gathering the like terms, Eq. (2.33) becomes:

.
ε =

1

2

[(
��

��*
ε̂

sin(
φ

2
)â
)×

+ cos(
φ

2
)
(
��

��
�
��*

(
â
ᵀ
â
)
1 = 1

ââ
ᵀ
− â×â×

)]
ω ⇒ .

ε =
1

2
(ε× + η1)ω (2.34)

where the identity from FUNDAMENTALS for â×â× (also used in Eq. (2.30)) is employed. Repeating the dif-
ferentiation for η andmaking use of right-hand side of Eq. (2.32) results in:

η̇ = −1

2
sin(

φ

2
)φ̇ = −1

2
sin(

φ

2
)â

ᵀ
ω ⇒ η̇ = −1

2
ε
ᵀ
ω (2.35)

Thederivatives of the quaternions in termsofω are providedbyEqs. (2.34) and (2.35). To obtainω in termsof
ε and η and their derivatives, one approach is to invert Eq. (2.34) (using Cramer’s rule for an explicit inverse),
which eventually yields:

ω = 2
[η21− ηε× + εε

ᵀ

η

].
ε (2.36)

Note: For an alternative approach of determining .ε and η̇ in terms of ω and vice versa, using ω = −
.
CC

ᵀ
,

refer to Section 1.4.3 of Spacecraft Dynamics and Control: an Introduction.

Angular Velocity for Infinitesimal Rotations

As discussed in FUNDAMENTALS, for very small rotation angles and ratesC ≈ 1−θ× ≈ 1−φâ× ≈ 1− 2ε×.
Generalizing this relationship with the notationC ≈ 1 − α×, where α ∈ {θ, φâ, 2ε}, the angular velocity
relationship from Eq. (2.9) becomes:

ω× = −
.
CC

ᵀ
= −

(
− .α×)(1−α×ᵀ)

=
.
α× +��

��:≈ 0.
α×α× (2.37)

from which we conclude that, for infinitesimally small angles and rates,ω ≈
.
θ ≈ φ

.̂
a ≈ 2

.
ε.

Note: A summary of attitude parameterizations, including alternative sets that are not discussed in this
course, is provided in Table 2.3 of Spacecraft Attitude Dynamics, along with the C and ω associated with
each parameterization.
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