
AER506 - Fall 2019
B. Vatankhahghadim

Lecture 3

Dynamics

H
AVING studied the geometry of motion, this lesson adds the physical laws of nature, primarily New-
ton’s laws ofmotion, and attempts to describe rigid bodymotion in the presence of external forces
and torques. The study beginswith a pointmass, continues on to systemofmasses, and concludes

with continua of point masses that closely resemble a rigid body.

Dynamics of a Point Mass

Figure 3.1: Point Mass

Consider a body ofmassm, as shown in Figure 3.1, with an infinitesimally small size,
relatively speaking, that can be represented by a point mass. Although planets are
not particularly small, they could be approximated as pointmasses in the large scale
of the solar system. Consider, also, an inertial frame, FI .

The relationship between acceleration (2nd derivative, as seen in FI , of the po-
sition vector of the point mass,

~
r) and an external force,

~
f , is readily provided by

Newton’s 2nd law:

~
f = m

~
r•• (3.1)

where (·)• denotes vector derivative as measured inFI , and
~
r is the absolute position of themass, from the

origin of FI ,OI . We also define linear momentum,
~
p, and relate it to force as follows:

~
p , m

~
r• ⇒

~
f =

~
p• (3.2)

where, once again,
~
r is the position from OI . Now, consider an arbitrary point, O, which may or may not

coincide with OI . Both force and momentum are independent of O, but angular momentum is not: we
define absolute angular momentum (or moment of momentum) about point O, as follows:

~
HO ,

~
ρ×

~
p ⇒

~
HO = m

~
ρ×

~
r• = m

~
ρ×

(
~
rO +

~
ρ
)•

= m
~
ρ×

~
r•O +m

~
ρ×

~
ρ• (3.3)

where
~
rO is the absolute position of O (with respect to OI ), and

~
ρ is the relative position of the point mass

with respect toO. Lastly, we define (relative) angular momentum about O and relate it to absolute angular
momentum as follows:

~
hO , m

~
ρ×

~
ρ• ⇒

~
HO = m

~
ρ×

~
r•O +

~
hO (3.4)
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The distinction between
~
HO and

~
hO vanishes ifO is inertially fixed (in which case

~
r•O =

~
0), or ifO ≡ OI (in

which case
~
ρ ≡

~
r). In this course, we will only deal with one of these special cases, so henceforth, angular

momentum as defined in Eq. (3.4) will only be used.
The kinetic energy of a point mass is provided by T = 1

2m~
v ·
~
v = 1

2m~
r• ·

~
r•, and is also a useful quantity

when studying motion, such as in a Keplerian orbit with a constant total energy.
We can also express all of these physical quantities in their referential form in FI :

f I = m
..
rI , pI = m

.
rI , hOI

= mρ×I
.
ρI , T =

1

2
m
.
r
ᵀ
I
.
rI

Note: If the components of each vector are to be expressed in a non-inertial reference frame, FA, the refer-
ential form of the transport theorem, presented in KINEMATICS and involving the rotation matrix, must be
used: for example, for FA rotating with an angular velocity of

~
ω with respect to FI , we have pI = m

.
rI =

mCIA

(.
rA + ω×

ArA
)
for linear momentum.

Dynamics of a System of Point Masses

Figure 3.2: System of
Point Masses

Consider a collection ofN distinct pointmasses as shown in Figure 3.2, eachwith
massmi, and let

~
f ij represent the internal force onmi exerted bymj . Also, let

~
f i

denote the external force onmi. In addition, consider an inertial frame,FI , and
let
~
ri denote the position vector of each mass with respect to the origin,OI .
Applying Newton’s 2nd law, first for each mass and then considering all

masses, results in:

~
f i +

N∑
j=1 ~

f ij = mi
~
r••i ⇒

N∑
i=1 ~

f i +

�
�
�
�
��>~

0
N∑
i=1

N∑
j=1 ~

f ij =

N∑
i=1

mi
~
r••i (3.5)

where cancellation results from Newton’s 3rd law, noting that
~
f ij = −

~
f ji.

Definition. The centre of mass of a system of particles is located at
~
r , which satisfies the following rela-

tionship: ( N∑
i=1

mi

)
~
r = m

~
r =

N∑
i=1

mi
~
ri ⇒

~
r ,

∑N
i=1mi

~
ri

m
(3.6)

wherem ,
∑N

i=1mi is the total mass of the system.

Using Eq. (3.6) and defining
~
fext ,

∑N
i=1

~
f i as the total external force on the system, Eq. (3.5) can be

rewritten as:
m
~
r•• =

~
fext (3.7)

which is analogous to Eq. (3.1) for a single pointmass. Defining
~
p ,

∑N
i=1

~
pi as the sumof the pointmasses’

linear momenta, we have:

~
pi = mi

~
r•i ⇒

~
p• = m

~
r•• =

~
fext (3.8)

which is analogous to Eq. (3.2) for a single point mass. Considering an arbitrary point, O as shown in Fig-
ure 3.3, and defining

~
HO ,

∑N
i=1

~
ρi×

~
pi (where

~
ρi is the relative position of the ith mass with respect toO)

2 of 7



LECTURE 3. DYNAMICS

as the sum of the point masses’ absolute angular momenta about O, we have:

~
HOi =

~
ρi ×

~
pi ⇒

~
HO =

N∑
i=1

mi
~
ρi ×

(
~
rO +

~
ρi)

• =
( N∑

i=1

mi
~
ρi

)
×
~
r•O +

N∑
i=1

mi
~
ρi ×

~
ρ•i (3.9)

where
~
rO is the absolute position of pointO (with respect toOI ).

Definition. The first moment of mass of a system of particles about point O is defined as:

~
cO ,

N∑
i=1

mi
~
ρi = m

~
ρ (3.10)

wherem ,
∑N

i=1mi is the total mass of the system, and
~
ρ is the relative position of its centre of mass with

respect toO.

Note: The first moment of mass about the centre of mass is zero, because
~
c =

∑N
i=1mi

(
~
ri −

~
r
)
=
~
0

based on the definition of centre of mass from Eq. (3.6).

Lastly, we define (relative) angularmomentum about O, and using Eq. (3.10), relate it to absolute angular
momentum as follows:

~
hO ,

N∑
i=1

mi
~
ρi ×

~
ρ•i ⇒

~
HO =

~
cO ×

~
r•O +

~
hO (3.11)

Figure 3.3: Centre of Mass
and Arbitrary PointO

which is analogous to Eq. (3.4) for a single point mass. Thus, absolute angu-
lar momentum consists of contributions from angular momenta of each point
mass in the system about O, as well as a contribution from motion of O. The
distinction between

~
HO and

~
hO vanishes if O is inertially fixed (in which case

~
r•O =

~
0), ifO ≡ OI (in which case

~
ρi ≡

~
ri), or ifO ≡ (in which case

~
cO =

~
0).

Once again, we will only focus on (relative) angular momentum as defined in
the left-hand side relationship of Eq. (3.11).

We continue our study of system of point masses by differentiating angular
momentumwith respect to time:

~
h•
O =

N∑
i=1

mi

(
��

��:~
0

~
ρ•i ×

~
ρ•i +

~
ρi ×

~
ρ••i
)
=

N∑
i=1 ~

ρi ×
(
mi
~
r••i
)
−
( N∑

i=1

mi
~
ρi

)
×
~
r••O (3.12)

where
~
ρi =

~
ri −

~
rO is used. Using Eq. (3.10) and the left-hand side relationship in Eq. (3.5) for mi

~
r••i ,

Eq. (3.12) can be rewritten as:

~
h•
O =

N∑
i=1 ~

ρi ×
~
f i +

N∑
i=1

N∑
j=1~

ρi ×
~
f ij −

~
cO ×

~
r••O (3.13)

where themiddle term on the right-hand side vanishes if we assume
~
f ij acts along

~
ρi−

~
ρj (which is the case

for gravitational forces, for example) and evoke f ji = −f ij :

N∑
i=1

N∑
j=1~

ρi ×
~
f ij =

1

2

N∑
i=1

N∑
j=1

(
~
ρi ×

~
f ij −

~
ρj ×

~
f ij

)
=
~
0 (3.14)
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which is known as the “strong version of Newton’s 3rd law”. Rearranging Eq. (3.13) upon applying Eq. (3.14)
yields the following relationship for external torque about point O,

~
τO:

~
τO ,

N∑
i=1 ~

ρi ×
~
f i =

~
h•
O +

~
cO ×

~
r••O (3.15)

The second termvanishes for the aforementioned special cases: ifO is inertially fixed (inwhich case
~
r•O =

~
0),

or ifO ≡ . Therefore, for torque about the centre of mass, we have:

~
h• =

~
τ (3.16)

which is the rotational analogue of the force and linear momentum relationship in Eq. (3.8).

SystemDynamics in a Rotating Frame

Suppose we have another reference frame, FB (such as one attached to a spacecraft’s body), rotating with
angular velocity

~
ω with respect to an inertial frame, FI . In order to express the force/torque relationships

studied thus far in terms of time derivatives as measured in FB , denoted by (·)◦, the transport theorem for
first and second derivatives of vectors, presented in KINEMATICS, is required. For example, Eq. (3.8) can be
expressed in terms of the dynamics observed in FB as follows:

~
p◦ +

~
ω ×

~
p = m

(
~
r◦◦ + 2

~
ω ×

~
r◦ +

~
ω◦ ×

~
r +

~
ω ×

(
~
ω ×

~
r
))

=
~
fext (3.17)

In a similar manner,
~
τ can also be expressed in terms of

~
h◦
O and

~
ω.

Dynamics of a Rigid Body

Figure 3.4: Rigid Body with
Frame FB

We now consider the limiting case of a system of point masses, with N → ∞,
where we have a continuum of massm as opposed to a discrete system. Inte-
grals and differential quantities replace summations and indexed variables. As
in Figure 3.4, consider an inertial frame, FI , and a body-fixed frame, FB with
arbitrary origin O, and let the position of a differential mass element, dm, with
respect to the origin of these frames be denoted by

~
r and

~
ρ, respectively.

Definition. A continuumof pointmasses is a rigid body if the distance between
any of two points within the body remains fixed. In other words,

~
ρ◦ =

~
0, as

measured in FB .

Integrating Eq. (3.1), valid for dm = σ(
~
ρ)dV (where σ and dV represent density and differential volume,

respectively) over the body results in:

~
p• ,

∫∫∫
V

~
p•(

~
r) dV =

∫∫∫
V

~
r••σ(

~
ρ) dV ⇒

~
fext ,

∫∫∫
V

~
f(
~
r) dV =

∫
m
~
r•• dm (3.18)

Letting
~
r represent the position of the body’s centre of mass, the continuum analogue of Eq. (3.6) is pro-
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vided by: (∫
m

dm

)
~
r = m

~
r =

∫
m
~
r dm ⇒

~
r ,

∫
m ~
r dm

m
(3.19)

We also obtain a continuum analogue of the body’s first moment of mass about point O for later use:

~
cO ,

∫
m
~
ρ dm = m

~
ρ (3.20)

where
~
ρ is the relative position of the centre of mass from pointO.

Using Eq. (3.19) for centre of mass, Eq. (3.18) can be rewritten as:

m
~
r•• =

~
fext (3.21)

This relationship implies that, in translation, any continuum of point masses (not just rigid) acts identically
to a point mass (located at

~
r ) if all mass of the body were concentrated at its centre of mass. This will be

useful for studying two-body problems involving a spacecraft and a planet, wherewewill treat the spacecraft
as a rigid body with massm at

~
r .

AssumingFB is rotatingwith respect toFI with an angular velocity of
~
ω, angularmomentum inEq. (3.4)

can be integrated over the volume as follows:

~
hO ,

∫∫∫
V

~
h(
~
ρ) dV =

∫∫∫
V

~
ρ×

~
ρ•σ(

~
ρ) dV =

∫
m
~
ρ×
(
�
�7~

0

~
ρ◦+

~
ω×

~
ρ
)
dm ⇒

~
hO = −

∫
m
~
ρ×
(
~
ρ×

~
ω
)
dm ,

~
J·
~
ω

(3.22)
where

~
J is a second order tensor (a “dyadic”), the scalar product of which with a vector is another vector.

Expressing the vectors inFB , namely using
~
hO =

~
F

ᵀ
BhO,

~
ρ =

~
F

ᵀ
Bρ, and

~
ω =

~
F

ᵀ
Bω (where we drop the ‘B’

subscript of the columnmatrices to avoid clutter), the following referential form of Eq. (3.22) is obtained:

hO = −
∫
m

ρ×ρ×ω dm , Jω (3.23)

Definition. The secondmoment of mass (or moment of inertia) matrix of a body about point O, given some
body-fixed frame, FB , is defined as:

J , −
∫
m

ρ×ρ× dm =

∫∫∫
V

[(
ρ
ᵀ
ρ
)
1− ρρ

ᵀ]
σ(ρ) dV (3.24)

where an identity for a×b× (for generic a and b) from FUNDAMENTALS is used.

Note: IfO ≡ , we label J ≡ I , since such a moment of inertia matrix provides simplifying consequences.
Moving forwardwith our study of rigid bodies, based on Eq. (3.15) for a systemof pointmasses and using

Eqs. (3.22) and (3.20), we have:

~
τO ,

∫∫∫
V

~
ρ×

~
f(
~
ρ) dV =

~
h•
O +

~
cO ×

~
r••O (3.25)

Focusing on the case withO ≡ (for which
~
c =

~
0), Eq. (3.25) can also be expressed in terms of themotion
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observed in FB , rotating at
~
ω with respect to FI :

~
h• =

~
h◦ +

~
ω ×

~
h =

~
τ (3.26)

where the transport theorem from FUNDAMENTALS is used. Lastly, resolving all vectors inFB as before, and
noting that h = Iω from Eq. (3.23), “Euler’s rigid body equations” are obtained from the referential form
of Eq. (3.26):

I
.
ω + ω×Iω = τ (3.27)

Together with Poisson’s kinematical equation from KINEMATICS,
.
CBI = −ω×CBI , Eq. (3.27) fully describes

the rotational motion of a rigid body, and the two sets of equations can be integrated as a coupled system in
order to determine the attitude of the body over time.

Properties of Moment of Inertia Matrix

Second moment of mass (or moment of inertia) matrix of a body about point O, J as defined in Eq. (3.24),
depends on the reference frame, FB , but it has rotational and translational transformation properties that
permit one to obtain the new J resulting from rotating or translating the reference frame. Regardless of the
reference frame choice, J is always symmetric (J = J

ᵀ
) and positive-definite (xᵀ

Jx > 0 for all x 6= 0).

Rotational Transformation

Figure 3.5: Rotation

Consider two body-fixed frames,FA andFB , that share the same origin,O, but are
rotated relative to each other, as shown in Figure 3.5. LetCBA represent the rotation
matrix from the former to the latter, and letJA andJB denote themoment of inertia
matrices corresponding to each frame.

The relative position of each point within the body with respect to O can be ex-
pressed in both frames as:

~
ρ =

~
F

ᵀ
AρA =

~
F

ᵀ
BρB (3.28)

using which together with Eq. (3.24) for moment of inertia gives:

JB = −
∫
m

ρ×Bρ
×
B dm = −

∫
m

(
CBAρA

)×(
CBAρA

)×
dm (3.29)

but
(
CBAρA

)×
= CBAρ

×
ACAB from KINEMATICS, substituting which into Eq. (3.29) yields:

JB = −
∫
m

CBAρ
×
A��

���:
1

CABCBAρ
×
ACAB dm = CBA

(
−
∫
m

ρ×Aρ
×
A dm

)
CAB (3.30)

where orthonormality of a rotation matrix is used. We thus have the following rotational transformation for
moment of inertia:

JB = CBAJACAB (3.31)

Note: In fact, this relationship holds for any dyadic, and is a generalization of uB = CBAuA for column
matrices.

6 of 7



LECTURE 3. DYNAMICS

Translational Transformation

Figure 3.6: Translation

Consider two body-fixed frames, FA and FB , that have their bases vectors ori-
ented parallel in pairs, but with OB translated to a relative position of

~
rBA from

OA, as in Fig. 3.6. Let
~
ρA and

~
ρB represent the relative position of each point in

the body with respect toOA andOB , respectively, such that
~
ρB =

~
ρA −

~
rBA.

Using Eq. (3.24), we have:

JB = −
∫
m

ρ×Bρ
×
B dm = −

∫
m

ρ×Aρ
×
A dm+

∫
m

r×BAρ
×
A dm+

∫
m

ρ×Ar
×
BA dm−

∫
m

r×BAr
×
BA dm (3.32)

which, using Eq. (3.20) for first moment of mass about point OA, can be rewritten as:

JB = JA + r×BAc
×
OA

+ c×OA
r×BA −mr

×
BAr

×
BA (3.33)

which provides the translational transformation for moment of inertia, namely the “parallel axis theorem”.

Note: IfOA ≡ (FA placed at the centre of mass), then cOA
= 0, JA ≡ IA, and Eq. (3.33) reduces to:

JB = IA −mr×BAr
×
BA (3.34)

whichdescribes the changes inmoment of inertiawhen the referencepoint is off-set from the centre ofmass.

Diagonalization

Since J is a symmetric matrix, the moment of inertia matrix corresponding to any body-fixed frame, FB ,
can be diagonalized as JB = EΛE−1, where Λ is a diagonal matrix of eigenvalues, each of which is called
a “principal moment of inertia”; andE is a matrix with eigenvectors as its columns, each of which describes
the coordinates (inFB) of the basis vectors that define the so-called “principal axes frame”. We callΛ ≡ JP

the diagonal moment of inertia matrix corresponding to the principal axes frame, and using Eq. (3.31) to
move from FB to FP , we have:

E−1JBE = Λ ≡ JP = CPBJBCBP (3.35)

which shows that E is, in fact, a rotation matrix. When studying rigid body motion, choosing FP with its
origin at the centre of mass results in some simplifications: for example, owing to the diagonal nature of
I , Euler’s equation in Eq. (3.27) can be written as three simple scalar equations, each corresponding to one
component of torque:

I1ω̇1 +
(
I3 − I2

)
ω2ω3 = τ1 (3.36a)

I2ω̇2 +
(
I1 − I3

)
ω1ω3 = τ2 (3.36b)

I3ω̇3 +
(
I2 − I1

)
ω1ω2 = τ3 (3.36c)

where I1, I2, and I3 are the principal moments of inertia.
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