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Lecture 4

Orbital Mechanics

T
HIS lesson combines the foundations of kinematics and dynamics to focus on the specific problem
of describing the motion of a celestial body, orbiting about a massive primary body as a result of
the gravitational force between the two. Conic sections that geometrically represent different types

of orbits are also discussed.

Kepler’s Laws

Based on the observational data obtained by Tycho, Kepler’s laws describe themotion of planets about Sun:

I) The orbit of a planet is an ellipse, with Sun at one of its two foci.

II) The radius vector from Sun to the planet sweeps out equal areas in equal time: dA/dt = constant.

III) The square of the planet’s orbital period is proportional to the cube of its semi-major axis: T 2 ∝ a3.

These laws provided corrections to Copernicus’ model that suggested circular orbits.

As shown in the subsequent sections, Kepler’s laws can be derived analytically from Newton’s gravita-
tional law for two bodies of massm1 andm2:

~
f =

−Gm1m2

r3 ~
r (4.1)

where
~
r is the position vector between the two bodies, pointing to the body that is experiencing the force

~
f

(in the opposite direction of
~
r), and r , |

~
r|. The constant G ≈ 6.67 × 10−11 m3/(kg · s2) is known as the

universal gravitational constant.

The Two-Body Problem

Consider twopointmasses,m1 andm2 (withm1 > m2), exerting gravitational forces on eachother as shown
in Figure 4.1a. Consider an inertial frame, FI , and define

~
r ,

~
r2 −

~
r1 as the relative position vector ofm2
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with respect tom1, and let r denote its magnitude. FromDYNAMICS, we have:

m1
~
r••1 =

~
f12 =

+Gm1m2

r3 ~
r ⇒

~
r••1 =

+Gm2

r3 ~
r (4.2a)

m2
~
r••2 =

~
f21 =

−Gm1m2

r3 ~
r ⇒

~
r••2 =

−Gm1

r3 ~
r (4.2b)

Subtracting Eq. (4.2a) from Eq. (4.2b) yields:

~
r•• =

−G(m1 +m2)

r3 ~
r =

−µ
r3 ~

r (4.3)

where µ , G(m1 +m2), and ifm1 � m2 (as in Sun/planet, or planet/spacecraft pairs), µ ≈ Gm1 is known
is the primary body’s standard gravitational parameter.

Note: An equivalent one-body problem can also be considered as in Figure 4.1b, in which a primary body of
massM , m1 +m2 is assumed to be fixed, and the motion of a reduced mass,m , m1m2/(m1 +m2), is
studied as the unknown. The relationship in Eq. (4.3) still holds (because of its relative nature), multiplying
which by the reduced mass yields:

m
~
r•• =

~
f21 =

−GMm

r3 ~
r , M , m1 +m2 , m ,

m1m2

m1 +m2
(4.4)

Let us study the motion of the centre of mass of the bodies, illustrated in Figure 4.1c, starting from its
definition and differentiating twice with respect to time:

(m1 +m2)
~
r = m1

~
r1 +m2

~
r2 ⇒ M

~
r•• = m1

~
r••1 +m2

~
r••2 =

~
f12 +

~
f21 =

~
0 ⇒

~
r•• =

~
0 (4.5)

where the left-hand side relationships in Eqs. (4.2a) and (4.2b) are used to relate forces to accelerations, and
Newton’s 3rd law is used to equate

~
f12 = −

~
f21. The result in Eq. (4.5) implies that the centre of mass in the

two-body problem moves at a constant velocity relative to OI , the origin of FI , and since FI is an inertial
frame, a frame attached to the centre of mass would also be inertial.

(a) Two-Body Problem (b) One-Body Problem (c) Centre of Mass

Figure 4.1: Treating Two Bodies under Gravitational Forces of Each Other

Constants of Orbital Motion

When the orbit ofm2 aboutm1 is considered, with
~
r denoting the relative position vector from the latter to

the former, there are three parameters related to the motion that remain constant: orbital angular momen-
tum, orbital energy, and eccentricity vector. These constants will prove useful for determining the shape,
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size, and orientation of orbits, and for predicting the effects of orbital manoeuvres on these properties.

Angular Momentum

Definition. The specific angular momentum associated with an orbit is defined as:

~
h ,

~
r ×

~
r• (4.6)

Differentiating both sides of Eq. (4.6) with respect to time, as measured in FI , and using Eq. (4.3) yield:

~
h• =��

��:~
0

~
r• ×

~
r• +

~
r ×

~
r•• =

~
r ×

(−µ
r3 ~

r
)
⇒

~
h• =

−µ
r3
���:~

0

~
r ×

~
r =

~
0 (4.7)

which implies that
~
h remains constant in the absence of external forces. In addition,

~
h is normal to

~
r by

definition, so
~
r is confined to the plane that has the constant

~
h as its normal.

Energy

Definition. The specific energy associated with an orbit is defined as:

ε ,
1

2~
r• ·

~
r• − µ

r
(4.8)

where the first term on the right-hand side is kinetic energy, while the second term represents potential en-
ergy, both per unit reduced mass.

Note: To seewhere thepotential termcomes from, consider apotential field, the gradient ofwhich is negative
of the gravitational force (which is conservative):

V ,
−µm
r

⇒ −
~
∇V = −∂V

∂r
ˆ
~
r =

−µm
r3 ~

r =
~
f21 (4.9)

Differentiating both sides of Eq. (4.8) with respect to time, as measured in FI , yields:

ε̇ =
~
r• ·

~
r•• +

µ

r2
ṙ =
−µ
r3�

��*

1
2
d
dt

(
~
r ·
~
r
)
= rṙ

~
r• ·

~
r +

µ

r2~
r• ⇒ − µ

r2
ṙ +

µ

r2
ṙ = 0 (4.10)

which implies that ε is constant. As we will see later, the energy of an orbit determines which type of conic
section governs the geometry of motion.

Eccentricity Vector

Definition. The eccentricity vector (themagnitude of which is known simply as eccentricity) associatedwith
an orbit is defined as:

~
e , ~

r• ×
~
h

µ
− ~

r

r
(4.11)

where both terms in the right-hand side lie on the orbit’s plane.
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Differentiating both sides of Eq. (4.11) with respect to time, as measured in FI , yields:

~
e• =

(
~
r•• × ���

,
~
r×
~
r•

~
h

µ
+ ~

r• ×���
~
0

~
h•

µ

)
−
(
~
r•

r
− ṙ

r2~
r
)
=

1

µ

[(
~
r•• ·

~
r•
)
~
r −

(
~
r•• ·

~
r
)
~
r•
]
−
(
~
r•

r
− ṙ

r2~
r
)

(4.12)

where the vector triple product identity
~
a × (

~
b ×

~
c) = (

~
a ·
~
c)
~
b − (

~
a ·
~
b)
~
c is used. Lastly, using Eq. (4.3) for

~
r••, we obtain:

~
e• =

1

µ

(−µ
r3
(
��
�*

1
2
d
dt

(
~
r ·
~
r
)
= rṙ

~
r ·
~
r•
)
~
r +

µ

r3�
��
�*r2(

~
r ·
~
r
)
~
r•
)
−
(
~
r•

r
− ṙ

r2~
r
)
=
~
0 (4.13)

which implies that
~
e is constant. This is another parameter that lies on the orbital plane (similar to

~
r) and is

used to describe the orientation of the orbit in the plane.

Describing the Orbit

Figure 4.2: Perifocal

As shown in Figure 4.2, we have the constant
~
h, normal to the orbital plane, that

specifies the plane of motion, as well as the constant
~
e that is fixed on the plane.

We nowwould like to find r, the orbiting body’s radial distance from the primary,
and θ, the angle between

~
r and

~
e (known as the true anomaly).

With the objective of finding θ in mind, we find the scalar product of
~
r and

~
e:

~
r ·
~
e =

~
r · ~

r• ×
~
h

µ
−�
��: r2

~
r ·
~
r

r
= ⇒ re cos(θ) =

~
h ·�

���:~
h

~
r ×

~
r•

µ
− r = h2

µ
− r (4.14)

where the scalar triple product identity from FUNDAMENTALS is used. Rearranging Eq. (4.14) yields the well-
known “polar equation”:

r =
l

1 + e cos(θ)
, l ,

h2

µ
(4.15)

where l is known as the semilatus rectum. Therefore, the radial distance of an orbiting planet can be deter-
mined using the knowledge of true anomaly, and vice versa. Together, these two parameters provide a polar
description of the orbital motion in its fixed plane.

Figure 4.3: Orbiting

With the aim of deriving two other useful relationships, one for energy and
one for speed, we define a rotating reference frame,FO shown in Figure 4.3, that
has its origin on the primary, and its 1-axis is always pointing to the orbiting body.
Consider, also, the perifocal frame fromFUNDAMENTALS,FP shown inFigure 4.2,
assumed to be inertial and with its origin on the primary (OP ≡ OO for the two
frames), and 1- and 3-axes parallel to

~
e and

~
h, respectively.

Resolving position
~
r, velocity

~
v ,

~
r• (time-derivative as measured in inertial FP ), and angular velocity

~
ω (of FO relative to FP ) in FO yields:

~
r =

~
F

ᵀ
O

r0
0

 ,
~
ω =

~
F

ᵀ
O

00
θ̇

 ,
~
v =

~
F

ᵀ
O

(.
rO + ω×OrO

)
=
~
F

ᵀ
O

 ṙθ̇r
0

 (4.16)
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where the transport theorem from KINEMATICS is used to determine the velocity vector. From Eqs. (4.8)
and (4.6), and using the referential forms of

~
r and

~
r• presented in Eq. (4.16), we have:

ε =
1

2
v
ᵀ
OvO −

µ

r
=
v2

2
− µ

r
=

1

2

(
ṙ2 + θ̇2r2

)
− µ

r
(4.17a)

h = |r×OvO| = r2θ̇ (4.17b)

where v , |
~
r•| represents speed. Setting the derivative of r from Eq. (4.15) with respect to θ to 0 shows

that the orbiting body is at the “peripasis” of the orbit, the closest distance to the primary, when θ = 0.
Substituting this result into Eq. (4.15), we have:

rπ =
l

1 + e
=
h2/µ

1 + e
, ṙπ = 0 (4.18)

where the subscript ‘π’ refers to periapsis. Substituting the zero time-derivative relationship from Eq. (4.18)
into Eq. (4.17a) andmaking use of Eq. (4.17b) and rπ from Eq. (4.18) yields, upon some algebraic manipula-
tions:

επ =
1

2
θ̇2πr

2
π −

µ

rπ
⇒ ε =

µ2

2h2
(
e2 − 1

)
(4.19)

where the fact that the orbital energy remains constant is used to omit its periapsis subscript. Rearranging
Eq. (4.19) provides a useful relationship for determining the orbit’s shape:

e =

√
1 +

2εh2

µ2
=

√
1 +

2εl

µ
(4.20)

We also define the so-called semi-major axis, which is another important constant parameter that deter-
mines the size of the orbit, and we relate it to energy using Eq. (4.20):

a ,
l

1− e2
⇒ ε = − µ

2a
(4.21)

Lastly, combining the right-hand side relationship in Eq. (4.21)with Eq. (4.17a), we obtain the “vis-viva equa-
tion”, which provides a very useful relationship between radial distance and speed:

v =

√
µ
(2
r
− 1

a

)
(4.22)

Note: For a parabola, semi-major axis is not defined. Since, as discussed below, ε = 0 for this type of orbit,
the relevant speed equation is simply v =

√
µ/r.

Conic Sections

The relationship in Eq. (4.15) is a polar coordinates description of a conic section, a curve obtained from a
plane’s intersection with a double cone. Therefore, the orbit of a body about another can adopt one of three
general shapes, determined by its eccentricity, e: an ellipse, a parabola, or a hyperbola. The properties as-
sociated with each category are summarized in Table 4.1. The parameter v∞ is the excess speed, reached as
r →∞, the “left-over” speed upon escaping the orbit.

Note: Refer to Section 3.3.1 of Spacecraft Dynamics and Control: an Introduction for a perifocal frame-based
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Table 4.1: Properties of Each Type of Orbit

Conic Section e ε a rmin rmax v∞

Ellipse < 1 < 0 > 0 =
l

1 + e
>
l

2

l

1− e
N/A

Parabola = 1 = 0 N/A =
l

1 + 1
=
l

2
N/A 0

Hyperbola > 1 > 0 < 0 =
l

1 + e
<
l

2
N/A

√
2ε =

√
−µ
a

approach of studying the position that naturally leads to the Cartesian equations of conic sections.
Some notes about the geometry and physics of each type of orbit are in order:

• Elliptic orbits: Sumof the orbiting body’s distance from the two foci is always constant, r1+r2 = 2a as
shown in Figure 4.4a, so we have a = 1

2

(
rmin+ rmax

)
= l/(1− e2), with rminmeasuring the periapsis

distance, and rmax known as the apoapsis distance. The line connecting the two extrema is known as
the line of apsides. An elliptic orbit has a negative energy, so an object in such an orbit is bound to
remain there, unless its energy is increased via external sources (such as spacecraft thrusters).

• Parabolic orbits: As a transitionpoint between elliptic andhyperbolic orbits, parabolic orbits have zero
energy, and the orbiting body will have no excess speed upon “escaping” from the gravitational pull of
the primary body. Theminimumspeed that an object in an elliptic orbit requires in order to embark on
a parabolic orbit is known as the escape velocity, and is obtained by setting ε = 0 in Eq. (4.17a) to yield
vesc =

√
2µ/rπ , where rπ = l/2 is the periapsis distance. This type of orbit is depicted in Figure 4.4b.

• Hyperbolic orbits: As r → ∞, from Eq. (4.15) we have θ∞ → cos−1
(
− 1/e

)
for the true anomaly,

from which one can compute the half-angle between the hyperbola’s asymptotes, γ = π − θ∞. An
object entering a hyperbolic orbit will eventually, upon exiting the branch, be deflected by δ = π− 2γ

from its original path, as shown in Figure 4.4c. Because of its positive energy and non-zero excess
speed, a hyperbolic orbit is particularly useful for interplanetary trajectories and planetary fly-by (or
“slingshot”) both of which will be visited later in the course.

(a) Ellipse (b) Parabola (c) Hyperbola

Figure 4.4: Illustration of Conic Sections

Revisiting Kepler’s Laws

We now show the validity of Kepler’s laws, originally based on empirical data, using Newton’s law of gravita-
tion that we have focused on thus far:

I Since an ellipse is a conic section with e < 1, this result has already been derived.
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II Approximating the differential area swept by the orbit as a triangle, we have:

dA ≈ 1

2
r(rdθ) ⇒ dA

dt
=

1

2
r2
dθ

dt
=
h

2
(4.23)

where Eq. (4.17b) is used. Since h =
~
h is a constant of motion, the area is swept at a constant rate.

III Integrating Eq. (4.23) over one complete orbital period, and equating the result with the known area of
an ellipse yields:

A∫
0

dA =

T+t0∫
t0

h

2
dt ⇒ A =

h

2
T = πab (4.24)

where a and b are the semi-major and semi-minor axis of the ellipse, respectively. We use geometry to
find b, for which we first write the periapsis distance in terms of a and e:

rπ = rmin =
l

1 + e
⇒ rπ = a(1− e) (4.25)

where Eq. (4.18) and the definition of a from Eq. (4.21) is used. The semi-minor axis is then obtained
as follows, using the Pythagorean theorem in Figure 4.4a:

b2 + (a− rπ)2 = b2 + (ae)2 = a2 ⇒ b = a
√
1− e2 (4.26)

Also, from the definition of semilatus rectum in Eq. (4.15) and from Eq. (4.21), we have:

l ,
h2

µ
⇒ h2 = lµ = aµ(1− e2) (4.27)

Lastly, substituting Eqs. (4.25) and (4.26) back into the squared form of Eq. (4.24) yields the desired
result:

T 2 =
4π2a2

[
a2���

�(
1− e2

)]
aµ��

��
(
1− e2

) =
4π2

µ
a3 ⇒ T 2 ∝ a3 (4.28)

We also have the following useful relationship for orbital period, using which we define themean or-
bital motion:

T = 2π

√
a3

µ
, n ,

2π

T
=

√
µ

a3
(4.29)

Themeanmotion, n, is measured in rad/s, and represents the constant angular rate that would corre-
spond to a circular motion of the same period as the original elliptic orbit.

Definitions of Anomalies

Three different angular measures, each with a different purpose and geometric significance, are commonly
used in orbital mechanics:
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θ

spacecraft

Earth

r
E

a

R	=	a

(a) True Anomaly, θ and Eccentric Anomaly,E

θ

O

spacecraft

EarthMa

r

(b) True Anomaly, θ, and Mean Anomaly,M

Figure 4.5: Angular Measures Used in Orbital Mechanics

θ true anomaly between line of apsides and
~
r (measured from primary body)

E eccentric anomaly between line of apsides and orbiting body’s vertical projection on a circle
of radiusR = a (measured from centre point)

M Mean Anomaly between line of apsides and an imaginary replica of the orbiting body that
moves uniformly on a circle of the same period (measured from centre point)

Note: The geometric interpretation ofmean anomalyM = n(t− t0) = (2π/T )(t− t0), is not intuitive, since
it requires a “hypothetical” scenario of a spacecraft moving in a circular orbit, concentric with the ellipse
(hence uniformly changing its angle as measured from the centre point). If the radius of this hypothetical
circle is taken to beR =

√
ab, then the circle and the ellipse will have equal areas. Mean anomaly,M , would

then correspond to the angle of the sector that has the same area as swept by the real orbiting body, starting
from t0. In Figure 4.5b, the blue and green areas are equal. Since, according to Kepler’s second law, this
area increases at a constant rate, the imaginary body that we have pictured will alsomove at a constant rate,
hence resulting in a linear (in time) increase inM from 0 to 2π.

Relating Time and Orbital Position

Since an ellipse is a projection of a circle, such that all vertical lines are shortened by an equal ratio, we have:

r sin(θ) =
b

�a
�a sin(E) ⇒

√
1− e2 sin(θ)
1 + e cos(θ)

= sin(E) (4.30)

where Eqs. (4.26) and (4.15), and l = a(1 − e2) are used. Using some trigonometric identities and further
manipulations, a relationship between the true and the eccentric anomaly is obtained:

tan
(θ
2

)
=

√
1 + e

1− e
tan

(E
2

)
(4.31)

differentiating which with respect toE and rearranging yields:

dθ

dE
=
�2 cos

2
(
θ/2
)

�2 cos2
(
E/2

)√1 + e

1− e
(4.32)
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Rearranging Eq. (4.17b) and substituting Eq. (4.32) into it yields:

dt =
r2

h
dθ =

r2

h

cos2
(
θ/2
)

cos2
(
E/2

)√1 + e

1− e
dE (4.33)

applying the half-angle formula and simplifying eventually yields:

dt =
r2

h

(a√1− e2
r

)
dE ⇒ h

t∫
t0

dτ = a
√
1− e2

E∫
0

r dE (4.34)

But it can be shown, from geometry and Cartesian coordinates, that r = a
(
1−e cos(E)

)
, substituting which

into Eq. (4.34) and carrying out the integration produces:

h(t− t0) = a2
√
1− e2

(
E − e sin(E)

)
⇒ E − e sin(E) =

√
µ

a3
(t− t0) =M (4.35)

where Eq. (4.27) is used to replace h. This result is known as “Kepler’s equation”. By solving Eqs. (4.35)
and (4.31) together, one can relate time to true anomaly.

Note: Refer to Section 3.5 of Spacecraft Dynamics and Control: and Introduction for some of the skipped
steps, and for more details on the derivation of Kepler’s equation.
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