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Lecture 6

Orbital Perturbations

T
HUS far, wehave only looked at the two-bodymotion resulting from the gravitational forces between
two bodies, for which there exists an analytic solution that describes an ideal Keplerian orbit. We
will now consider a more realistic model that accounts for perturbations resulting from external

sources, and attempt to provide a more accurate description of the resulting motion.

Overview

From ORBITAL MECHANICS, we know that an ideal Keplerian orbit is described by:

~
r•• =

−µ
r3 ~
r (6.1)

and can be uniquely specified using a set of constant orbital parameters; however, external disturbance
sources cause deviations from the ideal orbit that result in time-varying orbital parameters. A real perturbed
orbit can be, in general, represented by:

~
r•• =

−µ
r3 ~
r +

~
ap (6.2)

where
~
ap is the “perturbation acceleration” (perturbation force per unit mass of the body). Examples of per-

turbation sources include: non-spherical shape of Earth, invalidating the point mass approximation; gravi-
tational effects of other bodies, especially Moon and Sun (affecting the Earth-orbiting spacecraft); solar ra-
diation pressure, resulting from photons’ transfer of momentum; and atmospheric drag, depending on the
shape and aerodynamic characteristics of the orbiting body.

The approaches used for studying perturbations can be broadly categorized as follows:

• special perturbations: numerical approaches that are dependent on the initial conditions (ICs)

• general perturbations: analytic approaches with closed-form solutions
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LECTURE 6. ORBITAL PERTURBATIONS

Cowell’s Method

This is a special perturbations approach that directly integrates the equations of motion in Eq. (6.2). To this
end,

~
r and

~
v are expressed inFG, and the 2nd order ODE of Eq. (6.2) is written as a set of two 1st order ODEs:

[.
rG.
vG

]
=

 vG
−µ(

r
ᵀ
GrG

)3/2 rG + apG

 (6.3)

which can be integrated numerically using various techniques, such as a 4th order Runge-Kutta (RK4) in-
tegration scheme. This method is simple and straightforward, and works for any type of

~
ap; however, it is

also computationally expensive, since it requires a small step size, and becomes inaccurate for long-term
numerical studies.

Encke’s Method

This method, another special perturbations approach, integrates the ODEs describing the orbit’s “devia-
tions” over time. Considering an osculating (ideal) Keplerian orbit,

~
ρ(t), we have:

~
ρ•• =

−µ
ρ3 ~
ρ ,

~
ρ(0) =

~
r0 ,

~
ρ•(0) =

~
v0 (6.4)

where the same ICs as those of the true (perturbed) orbit are used, since the ideal orbit is considered to be
tangent to the true on at time 0. Now, defining δ

~
r ,

~
r −

~
ρ as the true orbit’s deviation from the osculating

orbit, we have:

δ
~
r•• =

~
r•• −

~
ρ•• =

−µ
r3 ~
r +

~
ap +

µ

ρ3~
ρ =

−µ
ρ3

[
δ
~
r −

(
1− ρ3

r3

)
~
r

]
+
~
ap , δ

~
r(0) =

~
0 , δ

~
r•(0) =

~
0 (6.5)

where Eq. (6.4) is used. Since δ
~
r changes much more slowly than

~
r, this method can use a larger step size

than Cowell’s method, and consequently can be less computationally demanding.

Note: The term 1− ρ3/r3 → 0 for small δr, whichmay lead to loss of precision resulting from direct integra-
tion of Eq. (6.5). To circumvent this issue, we can define 2q , 1− r2/ρ2, so that ρ3/r3 = (1− 2q)−3/2. Then,
1− ρ3/r3 could be expanded using Taylor series as:

1− ρ3

r3
= 1− (1− 2q)−3/2 ≈ 1−

(
1− 3q +

3× 5

2!
q2
)

= 3q − 15

2
q2 (6.6)

which converges rapidly for small q, making it suitable for replacement in Eq. (6.5).
While using this method, when δ

~
r grows beyond a user-specified tolerance, the osculating orbit is typi-

cally updated by setting the ICs of Eq. (6.5) using the true orbit’s ICs at the time. This is called “rectification”.

Gauss’ Variational Equations

These equations provide analytic expressions for how orbital parameters vary over time, so this is a general
perturbations method. We will only look at ȧ = da/dt as an example, but similar approaches could be used
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for the other parameters as well.

Recall, from ORBITAL MECHANICS, the following definition and relationship for orbital specific energy,
which can be differentiated with respect to time as shown:

ε , ~
v ·
~
v

2
− µ

r
=
−µ
2a

⇒ dε

dt
=

µ

2a2
da

dt
=��7

~
r•

~
v ·���

~
r••

~
v• +

µ

r2
���

(
~
r ·
~
r•)/r

ṙ (6.7)

rearranging which for ȧ yields, upon substituting the perturbed acceleration from Eq. (6.2):

da

dt
=

2a2

µ

dε

dt
=

2a2

µ

[
��

�
��

~
r• · −µ

r3 ~
r +

~
r• ·

~
ap +

��
��

~
r• · µ

r3~
r

]
⇒ ȧ =

2a2

µ ~
r• ·

~
ap (6.8)

Consider the orbiting frame, FO, with its origin on the primary and its 1-axis pointing to the orbiting body
at all times, as shown in Figure 6.1. We have, from ORBITAL MECHANICS and as shown in Figure 6.1 :

~
r =

~
F

ᵀ
O

r0
0

 ,
~
r• =

~
F

ᵀ
O

 ṙrθ̇
0

 , let
˜
ap =

˜
F

ᵀ
O

araθ
az

 (6.9)

using which Eq. (6.8) can be rewritten as:

ȧ =
2a2

µ

(
ṙar + rθ̇aθ

)
(6.10)

Figure 6.1: Orbiting

We would also like to have a relationship for ȧ in terms of orbital elements, as they
aremore common and convenient to use. To this end, the ṙ and θ̇ relationships from
ORBITALMECHANICS (whichwere, in turn, based on h = r2θ̇ and the time-derivative
of the polar equation of an orbit, respectively) are used to rewrite Eq. (6.10) as:

ȧ =
da

dt
=

2a2√
µa(1− e2)

[
e sin(θ)ar +

(
1 + e cos(θ)

)
aθ

]
(6.11)

Note: Refer to Section 7.7 of Spacecraft Dynamics and Control: an Introduction for the rest of Gauss’ varia-
tional equations, describing the rate of change of the other orbital parameters.

In addition toperturbation studies in the subsequent sections, anotherpractical exampleofwhereGauss’
variational equations couldbeused is in low-thrust trajectory analysis that involves small continuous thrust-
ing forces as opposed to large impulsive ones. In this case, the force per unit mass terms (ax, ay and az) are
replaced by the components of the applied thrust vector.

Perturbations due to a Non-Spherical Primary

Earth is not a perfect sphere, and as a result, perturbations result in geocentric spacecraft’s orbits from the
differences between the gravitational forces applied by the various parts of Earth’s asymmetric body. This
perturbation source is also known as J2 perturbation.
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FromNewton’s law of gravitation for an orbiting body of massm and a primary of massM , we have:

~
f =

−GMm

r3 ~
r ⇒

~
a =

−GM
r3 ~

r =
−µ
r3 ~
r =

~
∇φ(

~
r) (6.12)

where φ(
~
r) , µ/r is a scalar potential function, the gradient of which is force per unit mass. We know such

a potential function exists because the gravitational force is a conservative one.

Figure 6.2: Potential Field
of a Continuum

Instead of treating the primary body (Earth, for example) as a point mass,
whichwecanno longerdobecauseof its asymmetry,weconsider it as a collection
of differential mass elements, as depicted in Figure 6.2. Adopting a body-fixed
frame,FB , with its origin at the centre ofmass, we obtain the body’s total poten-
tial function, at a spatial position

~
r, by integrating over the differential potential

of each mass element, located at
~
ρ relative to the centre of mass:

dφ(
~
r) =

Gσ(
~
ρ) dV (

~
ρ)

|
~
r −

~
ρ|

⇒ φ(
~
r) =

∫∫∫
V

Gσ(
~
ρ) dV (

~
ρ)

|
~
r −

~
ρ|

=
G

r

∫∫∫
V

σ(
~
ρ) dV (

~
ρ)√

1− 2
ρ

r
cos(ψ) +

(ρ
r

)2 (6.13)

where the cosine law is used,ψ is the angle between
~
r and

~
ρ, and σ(

~
ρ) is the density that could vary over the

body. We now use power series to expand the reciprocal of the square root term, and obtain:

φ(
~
r) =

G

r

∞∑
n=0

∫∫∫
V

σ(
~
ρ)
(ρ
r

)n
Pn
(

cos(ψ)
)
dV (6.14)

where Pn are Legendre polynomials, with P0

(
cos(ψ)

)
= 1 , P1

(
cos(ψ)

)
= cos(ψ), etc. Pulling out the first

two terms of the summation and substituting these Legendre coefficients yields, upon replacing cos(ψ) =

(
~
ρ ·
~
r)/(ρr), the following:

φ(
~
r) =

�
��

�
��

��*
GM
r

G

r

∫∫∫
V

σ(
~
ρ) dV +

G

r3~
r ·

��
��

��
��*~

0∫∫∫
V

σ(
~
ρ)
~
ρ dV +

G

r

∞∑
n=2

∫∫∫
V

σ(
~
ρ)
(ρ
r

)n
Pn
(

cos(ψ)
)
dV (6.15)

where the first term is the potential associated with a point mass, M , and the volume integral of the sec-
ond term vanishes by definition of centre of mass, since OB ≡ . From Eq. (6.15), we observe that the
gravitational perturbations result from the third term, which we call the perturbing potential, φp(

~
r). It can

be shown, using spherical coordinates, that for a body that is axisymmetric about its 3-axis (for which the
azimuth angle no longer matters because of symmetry), the last term of Eq. (6.15) reduces to:

φp =
−GM
r

∞∑
n=2

Jn

(R
r

)n
Pn
(

sin(δ)
)

(6.16)

whereR is the body’s radius (taken to be the equatorial radius for Earth), and δ is the elevation angle from the
1,2-plane (the equatorial plane for Earth). The variables Jn are known as zonal harmonic coefficients, and
are functions of the Legendre polynomials, mass density, and the spherical coordinates used. In practice,
they are determined experimentally.
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Note: Refer to Section 7.3 of Spacecraft Dynamics and Control: an Introduction for details on how to arrive
at Eq. (6.16) using spherical harmonics.

For Earth, J2 ≈ 1.083 × 10−3 and J3 ≈ −2.53 × 10−6. The former results from Earth’s oblate spheroid
shape, while the latter accounts for its pear-like characteristics. Using only J2 as the dominant term and
noting that P2

(
sin(δ)

)
= (3/2) sin2(δ)− 1/2, Earth’s total gravitational potential is given by:

φ ≈ µ⊕
r
− µ⊕
r3
J2R

2
⊕

(3

2
sin2(δ)− 1

2

)
(6.17)

where the second term is responsible for the so-called J2 perturbation.
Lastly, the perturbation acceleration (force per unit mass) can be obtained via

~
ap =

~
∇φp(

~
r). Upon

taking the gradient in cylindrical coordinates and expressing eachbasis vector using orbital elements, Earth’s
perturbation force components permass (computed at a distance of r from its centre of mass) are given by:

ar =
∂φ

∂r
= C

(
3 sin2(i) sin2(ω + θ)− 1

)
(6.18a)

aθ =
1

r

∂φ

∂θ
= −C sin2(i) sin

(
2(ω + θ)

)
(6.18b)

az =
∂φ

∂z
= −C sin(2i) sin(ω + θ) (6.18c)

whereC ,
3µ⊕J2R

2
⊕

2r4
, with J2 ≈ 1.083× 10−3 for Earth.

Effects of J2 Perturbation on Orbital Parameters

In general, the effects of perturbations on orbital parameters can be studied using Gauss’ variational equa-
tions, in which the perturbation forces per unit mass corresponding to the pertinent source are substituted.
The resulting variations can be categorized as follows:

• secular variations: long-term changes that result in an increasing off-set of the parameters

• periodic variations: short-term oscillations that result in no net change over many orbits

Let us focus on J2 perturbations, for which the corresponding force per unit mass components are given
by Eq. (6.18). Denoting secular variations with 〈·̇〉 , ∆(·)/T to imply an average of the variations over an
orbital period, we have the following secular variations resulting from Earth’s J2 effects:

〈Ω̇〉 =
−3J2R

2
⊕

2(1− e2)2

√
µ⊕
a7

cos(i) (6.19a)

〈ω̇〉 =
3J2R

2
⊕

4(1− e2)2

√
µ⊕
a7
(
5 cos2(i)− 1

)
(6.19b)

〈ȧ〉 = 〈ė〉 = 〈i̇〉 = 0 (6.19c)

To seewhere these relationships come from, let us derive Eq. (6.19a). The respectiveGauss’ variational equa-
tion, derived in pages 174-176 of Spacecraft Dynamics and Control: an Introduction, is given by:

dΩ

dt
=

√
a
(
1− e2

)
µ

sin(ω + θ)

sin(i)
(
1 + e cos(θ)

)az (6.20)
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Also, using chain rule and θ̇ from ORBIT DESCRIPTION AND DETERMINATION, we can obtain the derivative
with respect to the true anomaly, which facilitates integration over an orbit:

dΩ

dθ
=

1

θ̇

dΩ

dt
=

r2√
µa
(
1− e2

) dΩ

dt
(6.21)

Substituting the relevant component of theJ2 force givenby Eq. (6.18c) into Eq. (6.20), substituting the result
into Eq. (6.21), and using trigonometric integrals to simplify the expression eventually yields:

dΩ

dθ
=
−3J2R

2
⊕

a2
(
1− e2

)2 cos(i) sin2(ω + θ)
[
1 + e cos(θ)

]
(6.22)

integrating which from θ = 0 to θ = 2π provides an expression for the total variation in Ω over an orbit:

∆Ω =

2π∫
0

dΩ

dθ
dθ =

−3πJ2R
2
⊕

a2
(
1− e2

)2 cos(i) (6.23)

which is, lastly, divided by T = 2π
√
a3/µ to yield 〈Ω̇〉 = ∆Ω/T as given by Eq. (6.19a).

Design based on J2 Perturbation

Although disturbances such as J2 effects are typically undesirable, they can sometimes be exploited for de-
sign purposes. Two types of orbits that are designed with J2 perturbations in mind are now considered.

Sun-synchronous Orbits

Figure 6.3: Sun-Sync.

Given somea and e, one can select i such that 〈Ω̇〉 = 2π rad/yr, based onEq. (6.19a).
Using this approach, the resulting orbital plane rotates on the reference frame (the
ascending node moves) at the same rate as Earth rotates around Sun. As a result,
the Sun-Earth-ascending-node angle remains the same at all times, as illustrated in
Figure 6.3. Applications include placing a satellite in constant sunlight, for instance.

Molniya Orbit

Figure 6.4: Molniya

According to Eq. (6.19b), 〈ω̇〉 = 0 when 5 cos2(i) − 1 = 0, which is the case for
i ≈ 63.4◦ or i ≈ 116.6◦. An orbit with one of these two inclinations is known as a
“frozen orbit”, since its argument of perigee does not rotate over time and its perigee
and apogee are fixed relative to Earth. When such an orbit is also highly elliptical,
the resulting Molniya orbit can be used for high latitude communication, since a
spacecraft in such an orbit spends the majority of its time close to the fixed apogee,
as shown in Figure 6.4.
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