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Lecture 9

Interplanetary Travel

E
QUIPPED with an understanding of orbital motion and how to modify spacecraft’s orbits, we can
now tackle the problem of travelling from one planet to another. This usually involves at least
three main stages: (1) escaping the home planet’s orbit, (2) orbiting about Sun towards the target

planet, and (3) entering an orbit about the target planet.

Overview

Suppose we would like to launch a spacecraft from Earth, ⊕, to Jupiter, Å, both assumed to have circular
orbits as shown in Figure 9.1. In theory, we have an n-body problem in which many celestial bodies si-
multaneously exert gravitational forces on the spacecraft. In order to simplify the analysis and for prelimi-
nary mission design purposes, the so-called “patched conic approximation” (PCA) may be used, in which:

Figure 9.1: Overview

• if the spacecraft is within the rSOI of a planet (⊕ or Å, or other planets
encountered en-route), it is considered to be in 2-bodymotion with that
planet only.

• if the spacecraft is outside the rSOI of a planet, it is considered to be in
2-body motion with Sun.

where rSOI refers to the radius of the planet’s sphere of influence (SOI).

A Criterion for Sphere of Influence

The definition of rSOI is somewhat arbitrary, as gravitational forces of external bodies still exist in the prox-
imity of the SOI boundary; however, a considerationof the relative effects of the planet’s gravity on the space-
craft’s acceleration compared to that of Sun provides a reasonable criterion for rSOI .

As shown in Figure 9.2, the spacecraft’s motion about Sun is described by:

��mc
~
r••c =

~
f cÀ +

~
f cp = −GmÀ��mc

r3c ~
rc −

Gmp��mc

ρ3 ~
ρ ⇒

~
r••c = −GmÀ

r3c ~
rc −

Gmp

ρ3 ~
ρ (9.1)
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Figure 9.2: Force and
Position Vectors

where
~
f cÀ and

~
f cp are the forces on the spacecraft exerted by Sun and the planet,

andmc,mp, andmÀ denote themass of the spacecraft, the planet, and Sun, respec-
tively. The position vectors

~
rc and

~
rp represent the spacecraft’s and the planet’s ab-

solute position relative to Sun, while
~
ρ is relative position of the spacecraft from the

planet. Letting
~
AÀ , −(GmÀ/r

3
c )
~
rc and

~
Ap , (Gmp/ρ

3)
~
ρ represent the space-

craft’s acceleration (relative to Sun) due to Sun and the planet, respectively, we find
the ratio of the magnitudes of these two parameters, assuming 1/r2c ≈ 1/r2p:

AÀ =
GmÀ

r2c
≈ GmÀ

r2p
, Ap =

Gmp

ρ2
⇒ Ap

AÀ
≈ mp

mÀ

(rp
ρ

)2
(9.2)

which is a relative measure of the planet’s influence on the spacecraft’s orbit about Sun.
The spacecraft’s motion about the planet is described by:

~
ρ•• =

~
r••c −

~
r••p =

~
r••c − ~

fpÀ
mp

=
(
− GmÀ

r3c ~
rc −

Gmp

ρ3 ~
ρ
)

+
(GmÀ

r3p ~
rp

)
(9.3)

where
~
fpÀ is Sun’s gravitational force on the planet. Rearranging Eq. (9.3) and assuming 1/r3c ≈ 1/r3p yields:

~
ρ•• ≈ −GmÀ

r3p

(
��

��:~
ρ

~
rc −

~
rp
)
− Gmp

ρ3 ~
ρ (9.4)

Defining
~
aÀ , −(GmÀ/r

3
p)
~
ρ and

~
ap , −(Gmp/ρ

3)
~
ρ as the spacecraft’s acceleration (relative to the planet)

due to Sun and the planet, respectively, we can take the ratio of the magnitudes of the two contributions:

aÀ =
GmÀ

r3p
ρ , ap =

Gmp

ρ2
⇒ aÀ

ap
≈ mÀ

mp

( ρ
rp

)3
(9.5)

which is a relative measure of Sun’s influence on the spacecraft’s orbit about the planet.
We now take the SOI to be the region in which the gravitational effects of the planet dominate over those

of the Sun, mathematically represented by:

aÀ
ap

<
Ap
AÀ

⇒ mÀ

mp

( ρ
rp

)3
<
mp

mÀ

(rp
ρ

)2
⇒ rSOI = rp

(mp

mÀ

)2/5
(9.6)

where rSOI is taken as the lower bound of the comparison inequality.

Stage 2 - Interplanetary Hohmann Transfer

Figure 9.3: Interplanetary
Hohmann Transfer

Assume the elliptic transfer orbit between the two planets’ orbits is going to
be aHohmann transfer, although it does not have to be. In this case, the trans-
fer ellipse is tangent to both planets’ orbits, so for a mission from ⊕ to Å, the
spacecraft’s velocity vector (relative toSun,À) upondeparture (exiting theSOI
of⊕) should be parallel to

~
v⊕. The SOI is assumed to be so small in the inter-

planetary scale that the position of the spacecraft (relative to Sun, À) upon
departure is taken to be the same as that of ⊕. From ORBITAL MANOEUVRES,
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for the Hohmann transfer, an elliptic orbit aboutÀ, we have:

at =
r⊕ + rÅ

2
, TOF = π

√
a3t
µÀ

(9.7)

where r⊕ and rÅ are the radii of the circular orbits of ⊕ and Å about À. But we need Å to meet the space-
craft when it arrives at its orbit, so we compute the relative phase angle between the two planets, θ, at the
departure time as follows:

n⊕ =
2π

T⊕
, nÅ =

2π

TÅ
, θ = π − nÅ · TOF (9.8)

where n⊕ and nÅ are the mean motions of the planets, in rad/s, about À. The term (nÅ · TOF ) describes
how much Å travels during the interplanetary travel time. The phase angle, θ, determines when a “launch
window” exists. The time between successive launch windows is known as a synodic period, and is given by:

Tsyn =
2π

|nÅ − n⊕|
(9.9)

where the denominator provides the relative angular rate of motion of ⊕ with respect to Å, so that the two
planets reach the same relative position, once again, after Tsyn.

v
v
c2

Figure 9.4: Arrival

Based on the vis-viva equation from ORBITAL MECHANICS, the spacecraft’s helio-
centric speed upon exiting the SOI of⊕, vc1 , and that upon entering the SOI of Å, vc2 ,
are given by:

vc1 =

√
µÀ

( 2

r⊕
− 1

at

)
, vc2 =

√
µÀ

( 2

rÅ
− 1

at

)
(9.10)

Note: In general,
~
vc2 need not be parallel to

~
vÅ, as shown in Figure 9.4.

Patch Conditions

For PCA, the mathematical relationships at the boundaries of the SOI’s involved - known as the “patch con-
ditions” - are (as shown in Figure 9.2):

~
rc =

~
rp +

~
ρ (9.11a)

~
vc =

~
vp +

~
ν (9.11b)

where
~
r and

~
v are position and velocity vectors with respect to Sun,À, while

~
ρ and

~
ν are those with respect

to the planet,⊕ or Å in our example.

Stage 1 - Departure Trajectory

Figure 9.5: Heliocentric

As illustrated in Figure 9.5, this stage usually involves a parabolic or hyperbolic tra-
jectory (both of which have ε > 0, as required) about the home planet, ⊕ in our
case. Recall that the interplanetary Hohmann transfer is to be tangent to the circu-
lar orbit of⊕, so we need

~
vc1 parallel to

~
v⊕ (both heliocentric) upon exiting the SOI

of⊕. To achieve this goal, we align the asymptote of the departure hyperbola to be
parallel to

~
v⊕.
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Note: In this section, the subscript ‘1’ is used todenote adeparture-relatedquantity.

Rearranging the patch condition in Eq. (9.11b), applied to the SOI boundary of⊕, and usingmagnitudes
only (since

~
vc1 and

~
v⊕ are parallel) provides the hyperbolic excess speed,

~
ν∞:

ν1 = vc1 − v⊕ = ν∞1
(9.12)

ν
→

1

Figure 9.6:
Geocentric

where vc1 is given by the left-hand side relationship in Eq. (9.10), since it is the spacecraft’s
absolute speed once exiting the SOI of⊕ and entering the Hohmann transfer. To find ∆νdep

of departure, we need to know
~
νπ1

, the geocentric velocity that the spacecraft will require
upon embarking on its hyperbolic trajectory from its parking orbit about ⊕, shown in Fig-
ure 9.6. In other words, it is the spacecraft’s speed at the periapsis of the hyperbola. In order
to successfully apply the vis-viva equation at the periapsis to find νdep, we need to determine
the semi-major axis, a1, of the hyperbolic departure trajectory (which is negative for a hyper-
bola). To this end, the orbit’s constant specific energy can be used:

ε1 =
−µ⊕
2a1

= lim
ρ1→∞

(ν21
2
− µ⊕
ρ1

)
=
ν2∞1

2
⇒ a1 =

−µ⊕
ν2∞1

(9.13)

where ρ1 denotes the spacecraft’s radial distance from ⊕ on its hyperbolic trajectory. With a1 determined,
the via-viva equation, applied both pre- and post-thrust at the manoeuvre node, can be used:

∆ν1 = νπ1
− νpark =

√
µ⊕

( 2

ρpark
− 1

a1

)
−
√

µ⊕
ρpark

(9.14)

where ρpark is both the radius of the parking orbit (assumed to be circular) and the periapsis distance of
the hyperbolic departure trajectory. Provided by Eq. (9.14) is how much ∆ν will be needed to initiate the
hyperbolic escape, but at which location on the parking orbit should this thrust be applied? To answer this
question, the geometry and orientation of the hyperbola, as shown in Figure 9.7, should be considered.

Figure 9.7: Phase

The polar equation with θ = 0 relates the periapsis distance to eccentricity:

ρpark =
a1(1− e21)

1 + e1��
��: 1

cos(θ)
= a1(1− e1) ⇒ e1 = 1− ρpark

a1
(9.15)

In addition, as mentioned in ORBITAL MECHANICS, using the polar equation with
ρ1 →∞ yields the escape true anomaly:

1 + e1 cos(θ∞1) = 0 ⇒ θ∞1 = cos−1
(−1

e1

)
(9.16)

which directly relates to the half-angle of the departure hyperbola, γ1:

γ1 + θ∞1 = π ⇒ cos(θ∞1) = cos(π − γ1) = − cos(γ1) =
−1

e1
⇒ γ1 = cos−1

( 1

e1

)
(9.17)

Therefore, the required phase angle between themanoeuvre node and the velocity vector of⊕ relative toÀ,

~
v⊕, is given by:

φ1 = π + γ1 = π + cos−1
( 1

e1

)
or φ1 = γ1 = cos−1

( 1

e1

)
(9.18)
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where the left-hand side relationship is for the case in which the target planet has a larger orbit than the
home planet, while the one of the right-hand side is for a transfer to a smaller orbit (in which case

~
ν∞ would

be in the opposite direction of
~
v⊕, and ν∞ from Eq. (9.12) would be negative).

Stage 3 - Arrival Trajectory

For arrival, as shown in Figure 9.8, the procedure is reversed. Rearranging the patch conditions in Eq. (9.11)
applied to the SOI boundary of Åyields:

~
ρ2 =

~
rc2 −

~
rÅ (9.19a)

~
ν∞2

=
~
vc2 −

~
vÅ (9.19b)

Figure 9.8: Heliocentric

where vc2 is given by the right-hand side relationship in Eq. (9.10), since
it is the spacecraft’s absolute speed upon exiting the Hohmann transfer
and entering the SOI of Å. If the SOI is small enough,

~
vc2 and

~
vÅ should

be nearly parallel, but in order to avoid collision, a non-zero parameter b2
(with−b2 being equal to the perpendicular distance of the focus from the
asymptotes) is required.

Similar to Eq. (9.13) fromdeparture, we can find a2, and subsequently
use trigonometry to find b2 of the arrival hyperbola:

a2 =
−µÅ
ν2∞2

, b2 = −ρ∞2 sin(ψ) = −rSOI sin

[
cos−1

(−
~
ρ∞2

·
~
ν∞2

ρ∞2ν∞2

)]
(9.20)

where ψ, shown in Figure 9.9, is the angle between the relative arrival velocity of the spacecraft,
~
ν∞2

, and
the its relative position upon entering the SOI of Å,

~
ρ∞2

(the magnitude of which equals rSOI ).

Figure 9.9: Joviocentric

Having determined a and b, the definition of the parameter b for a hy-
perbolic orbit can be used to find the arrival trajectory’s eccentricity:

b2 , a2

√
e22 − 1 ⇒ e2 =

√
1 +

b22
a22

(9.21)

Assuming a capture orbit of radius ρcap is desired, such that ρcap > RÅ

(radius ofÅ) to avoid collision, the following holds analogously to the left-
hand side relationship in Eq. (9.15):

ρcap = a2(1− e2) (9.22)

which is also the periapsis distance of the arrival hyperbola. Finally, using the vis-viva equation again, we
obtain:

∆ν2 = νπ2 − νcap =

√
µÅ

( 2

ρcap
− 1

a2

)
−
√

µÅ
ρcap

(9.23)

where ρcap is both the radius of the capture orbit (assumed to be circular) and the periapsis distance of the
hyperbolic arrival trajectory. It should be noted that ρcap can be controlled by modifying the b2 parameter
of the hyperbola via manipulating the entry point to the SOI; or by changing the spacecraft’s arrival velocity,
which typically requires more energy and fuel.
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General (Non-Hohmann) Interplanetary Trajectory

The desired trajectory between the home and the target planets cannot always be a Hohmann transfer, es-
pecially if a short TOF is desired or required. In that case, Lambert’s problem can be solved, using the home
planet’s position at the departure time,

~
r1 =

~
r⊕(t1), as the initial position vector; the target planet’s posi-

tion at the arrival time,
~
r2 =

~
r(t2), as the final position vector; and the desired mission duration as the TOF

between the two position vectors. The approach described in ORBIT DESCRIPTION ANDDETERMINATION can
then be used to obtain the spacecraft’s heliocentric velocity vector at the beginning of the interplanetary
transfer,

~
v1, and its final velocity vector at the end of it,

~
v2. Alternative methods of solving Lambert’s prob-

lem could also be used, for example if the phase angle is too larger than 90◦.
The calculations corresponding to Stages 1 and 3 remain very similar to those described above for a

Hohmann transfer, except the departure velocity vector no longer has to be parallel to the planet’s velocity
vector. However,

~
ν1 =

~
vc1 −

~
v⊕ =

~
ν∞1 is still valid in vectorial form, and can be used to obtain ν1 = |

~
ν1|.

Similar comments hold for the arrival excess velocity.

Planetary Fly-By

Also known as “gravity assist” and “gravity braking”, these phenomena result in an increase or decrease in
the spacecraft’s velocity vector as a result of the gravitational force of the fly-by body. Consider the fly-by
arrival and departure velocities relative to the planet (Å, for example),

~
ν1 and

~
ν2, and the corresponding

heliocentric velocities,
~
v1 and

~
v2.

For a trailing fly-by, illustrated in Figure 9.10a, ν1 = ν2, but
~
ν1 and

~
ν2 are not parallel. We have:

~
v1 =

~
vÅ +

~
ν1 ,

~
v2 =

~
vÅ +

~
ν2 ⇒

~
v2 >

~
v1 (9.24)

which implies that the planet’s deflecting themotion of the spacecraft through an angle of δ = π−2γ results
in an increase in the spacecraft’s absolute speed. In other words, ∆ε = (v22 − v21)/2 > 0 for the heliocentric
transfer orbit, which implies that the planet exerts ∆

~
v on the spacecraft. This type of fly-by is useful in

mission design for a fuel-free increase in the travel distance.
Similarly, for a leading fly-by, shown in Figure 9.10b, an opposite effect results in

~
v2 <

~
v1 and ∆ε < 0.

This fly-by serves well for braking purposes, with the goal of transferring to a smaller orbit, for instance.

(a) Trailing Fly-By (b) Leading Fly-By

Figure 9.10: Change of Spacecraft’s Relative Velocity during Planetary Fly-By
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